Return to search

Produtividade primária bruta e biomassa em pastagem no bioma cerrado: uma análise a partir dos modelos SEBAL/CASA e MOD17 no estado de Goiás

Submitted by Erika Demachki (erikademachki@gmail.com) on 2018-06-29T17:07:47Z
No. of bitstreams: 2
Tese - Gabriel Alves Veloso - 2018.pdf: 8920306 bytes, checksum: 5a9dfa70157bf131f7f0f29c31cd243f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-07-03T14:45:34Z (GMT) No. of bitstreams: 2
Tese - Gabriel Alves Veloso - 2018.pdf: 8920306 bytes, checksum: 5a9dfa70157bf131f7f0f29c31cd243f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-07-03T14:45:34Z (GMT). No. of bitstreams: 2
Tese - Gabriel Alves Veloso - 2018.pdf: 8920306 bytes, checksum: 5a9dfa70157bf131f7f0f29c31cd243f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-05-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Biophysical parameters of the soil-vegetation system, such as real evapotranspiration (ETR), radiation balance (Rn) and gross primary productivity (GPP), as well as information on dry biomass, are recognized as important in areas with agricultural activities, especially pastures (that usually do not have irrigation), and can help in the proper management of this environment. Making these measurements by satellite data, from the electromagnetic radiation reflected by the targets on the surface, makes these operations more efficient in a series of applications, such as monitoring of extensive agropastoral areas. The objective of this study was to estimate these parameters, based on the parameterization of models with specific data for pasture in the Cerrado of Goiás (mainly with regard to gross primary productivity), such as light use efficiency (LUE) and Photosynthetically Active Absorbed Radiation (FPAR). In order to improve these estimates, local meteorological data, such as Photosynthetically Active Radiation (PAR), were used, contributing to a better understanding of the spatial-temporal variability in the study area. The experiment was carried out at distinct scales, one of which was more detailed - in pasture areas in the Rio Vermelho watershed (BHRV), west portion of Goiás, using Landsat 8 OLI/TIRS imagery, and a more comprehensive one, for pasture areas in the Cerrado of the entire state of Goiás, using the NDVI images generated by the MODIS sensor - product MOD13Q1H. At BHRV, the variation of these parameters was analyzed from October 2014 to September 2015, using nine Landsat 8 images, path/roll 223/71. The estimation of these parameters, especially the GPP, was obtained through the coupling of the algorithms SEBAL (Surface Energy Balance Algorithm for Land), aimed at the estimation of the evapotranspiration, combined with the CASA (Carnegie Ames Stanford Approach) model, which calculates the Photosynthetically Active Radiation Absorbed (APAR) and, together with surface data, ends with the estimate of dry biomass. For this same area, an adaptation of the methodology of the GPP product obtained by MOD17A2H to Landsat 8 images was also carried out, in order to better understand the variation of GPP and dry biomass in medium spatial resolution images (30 m), with calibration of the model with specific pasture data and local meteorological data. Among the results, in the BHRV the values of Rn and ETR were consistent with those found in the literature, presenting significant spatial and temporal variability, with the first presenting a mean variation from 413 to 670 w/m-2, and the second from 1.6 to 4.55 mm.day-1, in which the lowest values can be related to pasture areas with some level of degradation. In relation to GPP, the SEBAL/CASA method proved to be more efficient among the methods applied in this research, following the climatic seasonality of the region and its influences on pasture areas, presenting a variation of 0.10 to 4.6 g C m-2, and with an average carbon sequestration potential of 4.8 Mg ha-1 year -1. The MOD17 method, adapted to Landsat 8 images, showed a variation of 0.5 to 4.0 g C m-2 day-1, with small variation in the monitoring of climatic seasonality of the region. The analysis of GPP, by the product MOD17A2H in the BHRV, presented a variation of 0.27 to 5.39 g C m-2 day-1, but with low spatial variation due to low image resolution and calibration data of the model (generated for the terrestrial globe). The analysis of the dry biomass followed the same pattern, with the SEBAL/CASA method being more efficient, obtaining good results with the data observed in the field, with a correlation coefficient of 0.663, mean absolute error of 0.228, root mean square error of 0.665 and Willmott's concordance index of 0.754. The dry biomass estimated with the product MOD17A2H showed good correlation (r = 0.833) with the field data, when considering the temporal variation; however, for this (dry biomass), mean absolute error and mean square error (2,133) were observed, due to the observed super-optimization. In relation to the Animal Unit by area (UA/hectare), the data obtained by the SEBAL/CASA and MOD17 method applied to the Landsat 8 images showed to be closer to the reality of the BHRV, with average values of UA/ha of 1,5 and 2,5 UA/ha, respectively. The UA/ha data obtained with MOD17A2H images appear to be high for the basin, with an average value of 3.6 UA/ha in the BHRV. In addition, data from GPP and dry biomass obtained in the pasture areas of the Cerradogoiano, from NDVI images (product MOD13Q1H), were significantly lower than those observed by the GPP product MOD17A2H, reflecting this result in the UA estimate/ha in the State of Goiás, which, with the product MOD17A2H, average values of 5.2 UA/ha were observed for the pasture areas of the State of Goiás, while the data obtained by this research presented average values of UA/ha of 2.5, which is closer to reality in such pasture areas in the Cerrado of Goiás. Therefore, the estimation of these parameters, aiming at a reading of the pasture and local climatic data, presented better results with the calibration of the models with specific data. / Estimar parâmetros biofísicos do sistema solo-vegetação, como evapotranspiração real (ETR), saldo de radiação (Rn) e produtividade primária bruta (GPP), assim como informações sobre biomassa seca, é reconhecidamente importante em áreas com atividades agrícolas, especialmente em pastagens (que normalmente não contam com irrigação), podendo auxiliar no adequado manejo desse ambiente. Fazer estas medições por dados satelitários, a partir da radiação eletromagnética refletida pelos alvos na superfície, torna estas operações mais eficientes a uma série de aplicações, como monitoramento de extensas áreas agropastoris. No referido trabalho objetivou-se estimar estes parâmetros, a partir da parametrização de modelos com dados específicos para a pastagem no Cerrado goiano (sobretudo com vistas à produtividade primária bruta), tais como a eficiência de uso da luz (LUE) e a Fração da Radiação Fotossinteticamente Ativa Absorvida (FPAR). No intuito de melhorar essas estimativas, utilizou-se de dados meteorológicos locais, como a Radiação Fotossinteticamente Ativa (PAR), contribuindo para uma melhor compreensão da variabilidade espaço-temporal na área de estudo. O experimento foi realizado em escalas distintas, sendo uma mais detalhada - em áreas de pastagens na Bacia hidrográfica do Rio Vermelho (BHRV), porção oeste de Goiás, com a utilização das imagens do satélite Landsat 8 sensor OLI/TIRS, e outra mais abrangente, para as áreas de pastagens no Cerrado de todo o estado goiano, a partir da utilização de imagens NDVI geradas pelo sensor MODIS - produto MOD13Q1H. Na BHRV, analisou-se a variação destes parâmetros no período de outubro de 2014 a setembro de 2015, sendo utilizadas nove imagens Landsat 8, órbita/ponto 223/71. A estimativa destes parâmetros, sobretudo a GPP, foi obtida através do acoplamento dos algoritmos SEBAL (Surface Energy Balance Algorithm for Land), voltado para a estimativa da evapotranspiração, combinado ao modelo CASA (Carnegie Ames Stanford Approach), que calcula a Radiação Fotossinteticamente Ativa Absorvida (APAR) e que, juntamente com dados de superfície, finaliza com a estimativa da biomassa seca. Para essa mesma área, foi realizada também uma adaptação da metodologia do produto GPP obtido pelo MOD17A2H para imagens do Landsat 8, no intuito de melhor compreender a variação da GPP e da biomassa seca em imagens de média resolução espacial (30 m), com a calibração do modelo com dados específicos para a pastagem e dados meteorológicos locais. Dentre os resultados, na BHRV os valores de Rn e ETR foram condizentes com os encontrados na literatura, apresentando significativa variabilidade espacial e temporal, sendo que o primeiro apresentou variação média no período estudado de 413 w/m-2 a 670 w/m-2, e o segundo de 1,69 mm.dia-1 a 4,55 mm.dia-1, no qual os menores valores podem ser relacionados à áreas de pastagem com algum nível de degradação. Em relação à GPP, o método SEBAL/CASA demonstrou ser mais eficiente dentre os métodos aplicados nesta pesquisa, acompanhando bem a sazonalidade climática da região e suas influências nas áreas de pastagem, ao apresentar uma variação de 0,10 a 4,6 g C m-2, e com um potencial médio de sequestro de carbono de 4,8 Mg ha-1 ano-1. O método do MOD17, adaptado às imagens do Landsat 8, apresentou variação de 0,5 a 4,0 g C m-2 dia-1, com pouca variação no acompanhamento da sazonalidade climática da região. Já a análise da GPP pelo produto MOD17A2H na BHRV, esta apresentou variação de 0,27 a 5,39 g C m-2 dia-1, porém com baixa variação espacial, devido à baixa resolução da imagem e dados de calibração do modelo (gerada para o globo terrestre). A análise da biomassa seca seguiu esse mesmo padrão, sendo o método SEBAL/CASA mais eficiente, obtendo-se bons resultados com os dados observados em campo, com um coeficiente de correlação de 0,663, erro absoluto médio de 0,228, raiz do erro quadrático médio de 0,665 e índice de concordância de Willmott de 0,754. Já a biomassa seca estimada com o produto MOD17A2H apresentou boa correlação (r = 0,833) com os dados de campo, quando levada em consideração a variação temporal; no entanto, para esta (biomassa seca) observou-se erro médio absoluto e erro médio quadrático (2,133) significativamente elevado, devido à superistimativa observada. Em relação à Unidade Animal por área (UA/hectare), os dados obtidos pelo método SEBAL/CASA e MOD17 aplicados à imagens Landsat 8 demonstraram ser mais próximos da realidade da BHRV, com valores médios de UA/ha de 1,5 e 2,5 UA/ha, respectivamente. Já os dados de UA/ha obtidos com imagens MOD17A2H, estes aparentam ser elevados para a bacia, com valor médio de 3,6 UA/ha na BHRV. Ademais, os dados de GPP e biomassa seca obtidos nas áreas de pastagens do cerrado goiano, a partir de imagens de NDVI (produto MOD13Q1H), apresentaram ser significativamente mais baixos que os observados pelo produto de GPP MOD17A2H, refletindo esse resultado na estimativa da UA/ha no estado de Goiás, que, com o produto MOD17A2H, foi observado valores médios de 5,2 UA/ha para as áreas de pastagens do Estado de Goiás. Já os dados obtidos por esta pesquisa, estes apresentaram valores médios de UA/ha de 2,5, sendo este mais próximo da realidade em tais áreas de pastagem no cerrado goiano. Portanto, a estimativa destes parâmetros, visando uma leitura da pastagem e dados climáticos locais, apresentou melhores resultados com a calibração dos modelos com dados específicos.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tede/8625
Date08 May 2018
CreatorsVeloso , Gabriel Alves
ContributorsFerreira , Manuel Eduardo, Silva, Bernardo Barbosa da, Ferreira , Manuel Eduardo, Vieira , Pedro Alves, Giongo, Pedro Rogério, Luiz , Gislaine Cristina, Ferreira Júnior, Laerte Guimarães
PublisherUniversidade Federal de Goiás, Programa de Pós-graduação em Geografia (IESA), UFG, Brasil, Instituto de Estudos Socioambientais - IESA (RG)
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG
Rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess
Relation7888271059505704147, 600, 600, 600, 600, 4536785967207850203, 104710613338178652, 2075167498588264571

Page generated in 0.0027 seconds