There are many active and passive vibration control techniques to reduce the effect of energy on structures which emerges during an earthquake and reduce the displacement of buildings that is caused by ground acceleration. Main advantage of passive vibration control techniques over active vibration control techniques is / no external power or a sensor is required for passive vibration control devices (PVCDs) and it results in lower installation and maintenance costs. However, PVCDs require a predefined optimum damping ratio and optimum damping distribution along the structure since they are not adaptive to changing ground acceleration values. During the design of the PVCDs numerous factors such as building properties and earthquake characteristics should be considered. Dry friction damper is an example of PVCD and has an extensive usage in many different fields due to its high energy damping capacity with low cost and ease of installation. In this thesis, damping of seismic energy at buildings with dry friction dampers is investigated and a new optimization method is developed in frequency domain by employing Describing Function Method (DFM) which reduces the computational effort compared to the time domain and finite element solutions drastically. The accuracy and verification of the presented method is investigated by comparing the frequency domain results with time marching solutions. Furthermore, damper placement and slip forces on the dampers are optimized for single and multi-story buildings equipped with dry friction dampers by utilizing the developed method.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12614134/index.pdf |
Date | 01 March 2012 |
Creators | Erisen, Zuhtu Eren |
Contributors | Cigeroglu, Ender |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | Access forbidden for 1 year |
Page generated in 0.0019 seconds