Early stage disease diagnosis still remains a challenge despite much efforts to develop novel imaging and diagnostic techniques. Nanoparticles used as molecular imaging contrast agents with multifunctionality and flexibility provide a platform for targeting the specific disease biomarkers and integration of imaging modalities. In this work, we developed a simplified method for synthesis of radiolabeled targeted super paramagnetic iron oxide nanoparticles (SPIOs). This method takes advantage of the chelator BAT that is conjugated to the PEG before the coating process begins. The effect of nanoparticle size and PEG density was investigated in a series of in vivo experiments. The 64Cu-VINP-SPIOs were used in the PET imaging of inflammation and 64Cu-CD105-SPIOs were used in imaging of 4T1 murine tumor model. In summary, we investigated the potential of the radiolabeled, targeted SPIOs in imaging atherosclerotic plaque and tumor in vivo using magnetic resonance imaging (MRI) and Positron emission tomography (PET). Our results show that dual modality SPIOs with active targeting mediated by affinity ligands can be a great tool in molecular imaging and diagnosis of early stage plaque and tumor.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/54253 |
Date | 07 January 2016 |
Creators | Masoodzadehgan, Nazanin |
Contributors | Bao, Gang |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Page generated in 0.0021 seconds