In this research work, we propose a novel energy harvester which converts solar electromagnetic radiation into DC energy at infrared regime. The proposed device consists of a dual polarized nanoantenna loaded with an anisotropic material at its gap. The dual polarized nanoantenna focuses the randomly polarized radiation into its gap resulting in high electric field. This high local electric field at the gap interacts with the anisotropic material. In our proposed design, the anisotropic material possesses nonlinear electrical conductivity and converts the dual polarizations at the gap into a DC voltage difference across the terminals of the nanoantenna. The novelty of our proposed design is in the rectification of the electromagnetic radiation without utilizing a diode. The theory of the energy harvester depends on the utilization of the dual polarized nanoantennas at high frequency regime. Therefore, we carry out a parametric study to investigate the resonance characteristic of the dual polarized nanoantenna. In addition, we investigate the effect of the geometrical parameters on the local field enhancement at the gap of the dual polarized nanoantenna. Also, another parametric study is carried out to determine the effect of the governing parameters of the anisotropic material on the generated DC voltage across the harvester. Our approach is illustrated through electromagnetic simulations. / Thesis / Master of Applied Science (MASc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/22210 |
Date | January 2017 |
Creators | Arfin, Rishad |
Contributors | Bakr, Mohamed, Howlader, Matiar, Ali, Shirook, Electrical and Computer Engineering |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds