Depuis ces deux dernières décennies, une nouvelle technologie sans fil appelée Réseau de Capteur Sans Fil (RCSF) résultant d"une fusion entre les systèmes embarqués et les communications sans fil a vu le jour. Un RCSF ("WSN : Wireless Sensor Network" en Anglais) est un réseau Ad hoc composé d"un grand nombre de nœuds qui sont des micro-capteurs qui peuvent être déployés de façon aléatoire ou déterministe dans une zone d"intérêt donnée. Ces nœuds capteurs sont capables de récolter plusieurs paramètres physiques sur l"environnement qui les entoure, appelé généralement zone de captage (ou zone de surveillance). Ensuite, ils doivent si nécessaire traiter les données capturées et les transmettre à un (ou plusieurs) nœud de collecte appelé station de base, centre de traitement ("sink" en Anglais). Beaucoup de domaines d"applications tels que le contrôle et suivi environnemental, le contrôle de production dans l"industrie, la surveillance de zone, le monitoring de l"habitat, l"agriculture intelligente, etc. sont basés sur les RCSF. Toutefois, les RCSF ne sont pas parfaits. En effet, compte tenu de leur petite taille, leur faible coût et leurs déploiement dans des zones souvent hostiles ou difficiles d"accès, les nœuds capteurs présentent un certain nombre de faiblesses parmi lesquelles une durée de vie du réseau limitée, une bande passante faible, des capacités de capture et de communication réduites, etc. Afin de surmonter ces contraintes des RCSF, plusieurs problématiques de recherche sont nées ces dernières années, et les principales portent sur l"optimisation de la consommation énergétique en vue d"améliorer la durée de vie du réseau. D"autres recherches importantes menées dans le domaine de ces réseaux portent sur les stratégies de placement des nœuds, sur la couverture de zones et sur la connectivité du réseau. Cependant, la plupart des solutions proposées ces dernières années ne prennent pas en compte toutes ces problématiques dans leurs modèles de résolution ; alors que dans beaucoup d"applications des RCSF telles que la surveillance de zone critique, le monitoring de l"habitat, l"agriculture intelligente, il est nécessaire de garantir en même temps une couverture complète de la zone de surveillance, une bonne connectivité du réseau, tout en optimisant au mieux la durée de vie de celui-ci. Le but de cette thèse est donc de proposer de nouveaux mécanismes efficaces pour l"optimisation de la durée de vie dans les RCSF, tout en garantissant, à tout moment de cette durée de vie, une couverture totale de la zone de surveillance, ainsi qu"une bonne connectivité du réseau. Pour atteindre nos objectifs, nous avons étudié et fait des propositions dans deux axes qui sont le placement des nœuds et les mécanismes d"ordonnancement au niveau de la couche MAC. Pour ces derniers, nous avons mis en place un algorithme appelé DSMAC (Distributed Scheduling Medium Acces Control) qui est basé sur notre méthode de placement des nœuds. Par ailleurs, DSMAC permet de couvrir 100% de la zone de surveillance, assure une bonne connectivité du RCSF et permet également aux nœuds capteurs d"économiser jusqu"à 30% de leur énergie comparativement à d"autres protocoles MAC tels que TunableMAC. / Since the past two decades, a new technology called Wireless Sensor Network (WSN) which result in a fusion of embedded systems and wireless communications has emerged. A WSN is Ad hoc network composed of many sensors nodes communicating via wireless links and which can be deployed randomly or deterministically over a given interest region. Theses sensors can also collect data from the environment, do local processing and transmit the data to a sink node or Base Station (BS) via multipath routing. Thereby, a wide range of potential applications have been envisioned using WSN such as environmental conditions monitoring, wildlife habitat monitoring, industrial diagnostic, agricultural, improve health care, etc. Nevertheless,WSN are not perfect. Indeed, given their small size, their low cost and their deployment generally in hostile or difficult access areas, sensor nodes have some weaknesses such as: a limited energy, so a network lifetime limited, limited bandwidth, limited computations and communications capabilities, etc. To overcome these limitations, several research issues from were created in recent years, and the main issues focus on the optimization of energy consumption in order to improve the network lifetime. Other important researches focus on issues of coverage areas, placement strategies of sensor nodes and network connectivity. However, most solutions proposed in recent years to resolve these issues do not take into account all these issues that we cited above in resolutions models; while in many WSN applications such as monitoring critical region, wildlife habitat monitoring, agricultural application, a full coverage of the monitoring region and network connectivity are mandatory as well an energy-awareness network lifetime. The objective of this thesis is thus to propose new scheduling mechanisms for optimizing the network lifetime in WSN, while ensuring at any time of the network lifetime a full coverage of the monitored region and network connectivity. To achieve our goals, we have study and done proposal in two axes which are placement strategy of sensor nodes and scheduling mechanism in the MAC layer. For these, we have implemented a Distributed Scheduling Medium Access Control algorithm (DSMAC) based on our placement method. Furthermore, DSMAC enables to cover 100% of the monitored region, to ensure optimal network connectivity and also allows sensors node to save up to 30% of their energy compared to other MAC protocols such as TunableMAC.
Identifer | oai:union.ndltd.org:theses.fr/2016MULH9134 |
Date | 17 May 2016 |
Creators | Ngom, Diery |
Contributors | Mulhouse, Université Cheikh Anta Diop de Dakar, Lorenz, Pascal |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds