Return to search

Computational Strategies for Dynamic Analysis of Reinforced Concrete Structures Subjected to Blast Loading

There has always been a challenge for designing structures against extreme dynamic loads. Blast loading falls under these loads category and blast resistant design has been gaining more interest during the past decade. Among different types of structures, Reinforced Concrete (RC) structures are usually recommended to be used for blast resistant design. However, the nonlinearities associated with these structures make their accurate analysis complicated. Therefore, simplified techniques have been introduced for nonlinear dynamic analysis of these structures. This study focuses on developing simplified computational strategies for the dynamic analysis of blast
loaded RC elements including beams, panels/slabs and columns. For RC beams, the basis for commonly used Single-Degree-of-Freedom (SDOF) models has been outlined. A Multi-Degrees-of-Freedom (MDOF) model which takes into account the concrete nonlinear properties has been developed and the effect of varying the number of degrees-of-freedom (DOF) on response has been studied. Results showed that increasing the number of DOF affects the pressure-impulse (P-I) diagrams, especially in the impulsive regime, as the extent of damage increased. In addition, the model was compared with the experimental data and showed good agreement. For RC panels,
a SDOF technique, based on the US Army Technical Manual TMS-1300 instructions, was
constructed and results were compared with the ones obtained from explicit Finite Element (FE) analysis. Compared to the FE results, SDOF model yielded conservative predictions for deflection but it usually underestimated the dynamic reactions. A modification for reaction calculation was proposed which resulted in significantly better prediction of the reaction for the impulsive range of loading. Finally, considering the important role of columns in providing the overall stability of the structure, a MDOF model was developed for RC columns and the load carrying capacity of the columns was investigated for different levels of axial load, strain rate and damage. Increasing the strain rate enhanced the column's cross section properties whereas increasing the levels of axial load reduced the cross section curvature and the column deflection capacities. Results also showed that good detailing at the supports can significantly improve the load carrying capacity of RC columns. / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/23594
Date08 1900
CreatorsRezaei, Seyed, H.C.
ContributorsEl-Dakhakhni, W.W., Civil Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.002 seconds