Return to search

Runtime specialization for heterogeneous CPU-GPU platforms

Heterogeneous parallel architectures like those comprised of CPUs and GPUs are a tantalizing compute fabric for performance-hungry developers. While these platforms enable order-of-magnitude performance increases for many data-parallel application domains, there remain several open challenges: (i) the distinct execution models inherent in the heterogeneous devices present on such platforms drives the need to dynamically match workload characteristics to the underlying resources, (ii) the complex architecture and programming models of such systems require substantial application knowledge and effort-intensive program tuning to achieve high performance, and (iii) as such platforms become prevalent, there is a need to extend their utility from running known regular data-parallel applications to the broader set of input-dependent, irregular applications common in enterprise settings. The key contribution of our research is to enable runtime specialization on such hybrid CPU-GPU platforms by matching application characteristics to the underlying heterogeneous resources for both regular and irregular workloads. Our approach enables profile-driven resource management and optimizations for such platforms, providing high application performance and system throughput. Towards this end, this research: (a) enables dynamic instrumentation for GPU-based parallel architectures, specifically targeting the complex Single-Instruction Multiple-Data (SIMD) execution model, to gain real-time introspection into application behavior; (b) leverages such dynamic performance data to support novel online resource management methods that improve application performance and system throughput, particularly for irregular, input-dependent applications; (c) automates some of the programmer effort required to exercise specialized architectural features of such platforms via instrumentation-driven dynamic code optimizations; and (d) proposes a specialized, affinity-aware work-stealing scheduling runtime for integrated CPU-GPU processors that efficiently distributes work across all CPU and GPU cores for improved load balance, taking into account both application characteristics and architectural differences of the underlying devices.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/54915
Date27 May 2016
CreatorsFarooqui, Naila
ContributorsSchwan, Karsten, Yalamanchili, Sudhakar
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.0023 seconds