Return to search

Controller Design And Simulation For A Helicopter During Target Engagement

The aim of this thesis is to design a controller for an unmanned helicopter to perform target engagement. This mission is briefly defined as / the helicopter flies to a firing point under the commands of a trajectory controller, and then it is aligned to the target with attitude control. After weapon firing, the helicopter initiates a return maneuver under again the commands of the trajectory controller. This mission where the continuous systems and discrete guidance decisions are to be executed in coherence can be studied as a hybrid control problem. One hybrid control approach which is used in this study is the representation based on two motion primitives: trim trajectories and maneuvers. To obtain the desired trim trajectories and the maneuvers, a dynamic inversion based controller is developed. The controller has two loops: the inner loop which controls the helicopter attitudes and the outer loop which controls the helicopter trajectory. A guidance algorithm is developed which enables the controller to switch from the inner loop to the outer loop or vice versa. Simulations are generated to test the controller performance.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12613868/index.pdf
Date01 December 2011
CreatorsAvcioglu, Sevil
ContributorsYavrucuk, Ilkay
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for METU campus

Page generated in 0.0125 seconds