In this thesis the action learning and generation problem on a humanoid robot is studied. Our aim is to realize action learning, generation and recognition in one system and our inspiration source is the mirror neuron hypothesis which suggests that action learning, generation and recognition share the same neural circuitry. Dynamic Movement Primitives, an efficient action learning and generation approach, are modified in order to fulfill this aim. The system we developed (1) can learn from multiple demonstrations, (2) can generalize to different conditions, (3) generates actions in a closed-loop and online fashion and (4) can be used for
online action recognition. These claims are supported by experiments and the applicability of the developed system in real world is demonstrated through implementing it on a humanoid robot.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12612477/index.pdf |
Date | 01 September 2010 |
Creators | Tunaoglu, Doruk |
Contributors | Sahin, Erol |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0021 seconds