Return to search

Dynamic Probabilistic Risk Assessment of Nuclear Power Generation Stations

Risk assessment is essential for nuclear power plants (NPPs) due to the complex dynamic nature of such systems-of-systems, as well as the devastating impacts of nuclear accidents on the environment, public health, and economy. Lessons learned from the Fukushima nuclear accident demonstrated the importance of enhancing current risk assessment methodologies and developing efficient early warning decision support tools. Static probabilistic risk assessment (PRA) techniques (e.g., event and fault tree analysis) have been extensively adopted in nuclear applications to ensure NPPs comply with safety regulations. However, numerous studies have highlighted the limitations of static PRA methods such as the lack of considering the dynamic hardware/software/operator interactions inside the NPP and the timing/sequence of events. In response, several dynamic probabilistic risk assessment (DPRA) methodologies have been developed and continuously evolved over the past four decades to overcome the limitations of static PRA methods. DPRA presents a comprehensive approach to assess the risks associated with complex, dynamic systems. However, current DPRA approaches are faced with challenges associated with the intra/interdependence within/between different NPP complex systems and the massive amount of data that needs to be analyzed and rapidly acted upon. In response to these limitations of previous work, the main objective of this dissertation is to develop a physics-based DPRA platform and an intelligent data-driven prediction tool for NPP safety enhancement under normal and abnormal operating conditions. The results of this dissertation demonstrate that the developed DPRA platform is capable of simulating the dynamic interaction between different NPP systems and estimating the temporal probability of core damage under different transients with significant analysis advantages from both the computational time and data storage perspectives. The developed platform can also explicitly account for uncertainties associated with the NPP's physical parameters and operating conditions on the plant's response and probability of its core damage. Furthermore, an intelligent decision support tool, developed based on artificial neural networks (ANN), can significantly improve the safety of NPPs by providing the plant operators with fast and accurate predictions that are specific to such NPP. Such rapid prediction will minimize the need to resort to idealized physics-based simulators to predict the underlying complex physical interactions. Moving forward, the developed ANN model can be trained under plant operational data, plants operating experience database, and data from rare event simulations to consider for example plant ageing with time, operational transients, and rare events in predicting the plant behavior. Such intelligent tool can be key for NPP operators and managers to take rapid and reliable actions under abnormal conditions. / Thesis / Doctor of Philosophy (PhD)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/26246
Date January 2021
CreatorsElsefy, Mohamed HM
ContributorsEl-Dakhakhni, Wael, Wiebe, Lydell, Civil Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0019 seconds