This thesis recounts the experimental study of the dynamic response of a blast resistant glazing system to explosive loading. A combination of triaxial force sensors, pressure gauges, and laser displacement gauges capture the response in detail over a wide range of scenarios. The scenarios include low level blast loading to characterize the reaction at points around the perimeter of the window, moderate level blast loading to examine the repeatability of the blast scenario, and high level blast loading to capture the response during failure as the tensile membrane forms. The scenarios are modeled via an analytical Single-Degree-of-Freedom model as well as finite element modeling in ANSYS Explicit Dynamics. In addition, this study investigates some of the differences between experimental data and the predictions made by modeling.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_theses-1028 |
Date | 01 January 2010 |
Creators | Wedding, William Chad |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of Kentucky Master's Theses |
Page generated in 0.0022 seconds