Return to search

Dynamic time warping : apports théoriques pour l'analyse de données temporelles : application à la classification de séries temporelles d'images satellites / Dynamic time warping : theoretical contributions for data mining, application to the classification of satellite image time series

Les séries temporelles d’images satellites (STIS) sont des données cruciales pour l’observation de la terre. Les séries temporelles actuelles sont soit des séries à haute résolution temporelle (Spot-Végétation, MODIS), soit des séries à haute résolution spatiale (Landsat). Dans les années à venir, les séries temporelles d’images satellites à hautes résolutions spatiale et temporelle vont être produites par le programme Sentinel de l’ESA. Afin de traiter efficacement ces immenses quantités de données qui vont être produites (par exemple, Sentinel-2 couvrira la surface de la terre tous les cinq jours, avec des résolutions spatiales allant de 10m à 60m et disposera de 13 bandes spectrales), de nouvelles méthodes ont besoin d’être développées. Cette thèse se focalise sur la comparaison des profils d’évolution radiométrique, et plus précisément la mesure de similarité « Dynamic Time Warping », qui constitue un outil permettant d’exploiter la structuration temporelle des séries d’images satellites. / Satellite Image Time Series are becoming increasingly available and will continue to do so in the coming years thanks to the launch of space missions, which aim at providing a coverage of the Earth every few days with high spatial resolution (ESA’s Sentinel program). In the case of optical imagery, it will be possible to produce land use and cover change maps with detailed nomenclatures. However, due to meteorological phenomena, such as clouds, these time series will become irregular in terms of temporal sampling. In order to consistently handle the huge amount of information that will be produced (for instance, Sentinel-2 will cover the entire Earth’s surface every five days, with 10m to 60m spatial resolution and 13 spectral bands), new methods have to be developed. This Ph.D. thesis focuses on the “Dynamic Time Warping” similarity measure, which is able to take the most of the temporal structure of the data, in order to provide an efficient and relevant analysis of the remotely observed phenomena.

Identiferoai:union.ndltd.org:theses.fr/2012STRAD023
Date13 September 2012
CreatorsPetitjean, François
ContributorsStrasbourg, Gançarski, Pierre
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0112 seconds