Return to search

Towards Efficient Delivery of Dynamic Web Content

Advantages of cache cooperation on edge cache networks serving dynamic web content were studied. Design of cooperative edge cache grid a large-scale cooperative edge cache network for delivering highly dynamic web content with varying server update frequencies was presented. A cache clouds-based architecture was proposed to promote low-cost cache cooperation in cooperative edge cache grid. An Internet landmarks-based scheme, called selective landmarks-based server-distance sensitive clustering scheme, for grouping edge caches into cooperative clouds was presented. Dynamic hashing technique for efficient, load-balanced, and reliable documents lookups and updates was presented. Utility-based scheme for cooperative document placement in cache clouds was proposed. The proposed architecture and techniques were evaluated through trace-based simulations using both real-world and synthetic traces. Results showed that the proposed techniques provide significant performance benefits.

A framework for automatically detecting cache-effective fragments in dynamic web pages was presented. Two types of fragments in web pages, namely, shared fragments and lifetime-personalization fragments were identified and formally defined. A hierarchical fragment-aware web page model called the augmented-fragment tree model was proposed. An efficient algorithm to detect maximal fragments that are shared among multiple documents was proposed. A practical algorithm for detecting fragments based on their lifetime and personalization characteristics was designed. The proposed framework and algorithms were evaluated through experiments on real web sites. The effect of adopting the detected fragments on web-caches and origin-servers is experimentally studied.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/7646
Date26 August 2005
CreatorsRamaswamy, Lakshmish Macheeri
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format1653682 bytes, application/pdf

Page generated in 0.0018 seconds