Many mechanical systems exhibit nonlinear movement and are subject to perturbations from a desired equilibrium state. These perturbations can greatly reduce the efficiency of the systems. It is therefore desirous to analyze the asymptotic stabilizability of an equilibrium solution of nonlinear systems; an excellent method of performing these analyses is through study of Jacobian linearization's and their properties. Two enlightening examples of nonlinear mechanical systems are the Simple Inverted Pendulum and the Inverted Pendulum on a Cart (PoC). These examples provide insight into both the feasibility and usability of Jacobian linearizations of nonlinear systems, as well as demonstrate the concepts of local stability, observability, controllability and detectability of linearized systems under varying parameters. Some examples of constant disturbances and effects are considered. The ultimate goal is to examine stabilizability, through both static and dynamic feedback controllers, of mechanical systems
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-2173 |
Date | 01 January 2005 |
Creators | Cox, Bruce |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0017 seconds