Return to search

Bayes linear variance learning for mixed linear temporal models

Modelling of complex corroding industrial systems is ritical to effective inspection and maintenance for ssurance of system integrity. Wall thickness and corrosion rate are modelled for multiple dependent corroding omponents, given observations of minimum wall thickness per component. At each inspection, partial observations of the system are considered. A Bayes Linear approach is adopted simplifying parameter estimation and avoiding often unrealistic distributional assumptions. Key system variances are modelled, making exchangeability assumptions to facilitate analysis for sparse inspection time-series. A utility based criterion is used to assess quality of inspection design and aid decision making. The model is applied to inspection data from pipework networks on a full-scale offshore platform.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:694810
Date January 2012
CreatorsRandell, David
PublisherDurham University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://etheses.dur.ac.uk/3646/

Page generated in 0.0014 seconds