Manually creating test cases is time consuming and error prone. Search-based software testing (SBST) can help automate this process and thus to reduce time and effort and increase quality by automatically generating relevant test cases. Previous research have mainly focused on static programming languages with simple test data inputs such as numbers. In this work we present an approach for search-based software testing for dynamic programming languages that can generate test scenarios and both simple and more complex test data. This approach is implemented as a tool in and for the dynamic programming language Ruby. It uses an evolutionary algorithm to search for tests that gives structural code coverage. We have evaluated the system in an experiment on a number of code examples that differ in complexity and the type of input data they require. We compare our system with the results obtained by a random test case generator. The experiment shows, that the presented approach can compete with random testing and, for many situations, quicker finds tests and data that gives a higher structural code coverage.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-4340 |
Date | January 2008 |
Creators | Mairhofer, Stefan |
Publisher | Blekinge Tekniska Högskola, Avdelningen för programvarusystem |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0518 seconds