Process economic improvement subject to safety, operational and environmental constraints is an ultimate goal of using on-line process optimization and control techniques. The dynamic nature of present-day market conditions motivates the consideration of process dynamics within the economic optimization calculation. Two key paradigms for implementing real-time dynamic economic optimization are a dynamic real-time optimization (DRTO) and regulatory MPC two-layer architecture, and a single-level economic model predictive control (EMPC) con figuration. In the two-layer architecture, the economically optimal set-point trajectories computed in an upper DRTO layer are provided to the MPC layer, while in the
single-layer EMPC con figuration the economics are incorporated within the MPC objective function. There are limited studies on a systematic performance comparison between these two approaches. Furthermore, these studies do not simultaneously consider the economic, disturbance rejection and computational performance criteria. Thus, it may not be clear under what conditions one particular method is preferable over the other. These reasons motivate a more comprehensive comparison between the two paradigms, with both open and closed-loop predictions considered in the DRTO calculations. In order to conduct this comparison, we utilize two process case studies for the economic analysis and performance comparison of on-line optimization systems. The first case study is a process involving two stirred-tank reactors in-series with an intermediate mixing point, and the second case study is a linear multi-input single-output (MISO) system. These processes are represented using a fi rst principles model in the form of differential-algebraic equations (DAEs) system for the first case study and a simplified linear model of a polymerization reactor for the second case study problem. Both of the case study processes include constraints associated with input variables, safety considerations, and output quality. In these case study problems, the objective of optimal process operation is net profit improvement.
The following performance evaluation criteria are considered in this study: (I) optimal value of the economic objective function, (II) average run time (ART) over a same operating time interval, (III) cumulative output constraint violation (COCV) for each constraint. The update time of the single-layer approach is selected to be equal to that of the control layer in the two-layer formulations, while the update time of the economic layer in the two-layer formulation is bigger than that of the single-layer approach. The nonlinear programing (NLP) problems which result in the single-layer and two-layer formulations and the quadratic programing problem which corresponds to the MPC formulation are solved using the fmincon and quadprog optimization solvers in MATLAB. Performance assessment of the single-layer and two-layer formulations is evaluated in the presence of a variety of unknown disturbance scenarios for the first case study problem. The effect of a dynamic transition in the product quality is considered in the performance comparison of the single-layer and two-layer methods in the second case-study problem.
The first case study problem results show that for all unknown disturbance scenarios, the economic performance of the single-layer approach is slightly higher than that of the two layer formulations. However, the average computation times for the DRTO-MPC two-layer formulations are at least one order of magnitude lower than that of the EMPC formulation.
Also, comparison results of the COCV for the EMPC formulation for different sizes of update time intervals could justify the necessity of the MPC control layer to reduce the COCV for the economic optimization problems with update times larger than that of the MPC control layer. A similar computational advantage of the OL- and CL-DRTO-MPC over the EMPC is observed for the second case study problem. In particular, it is shown that increasing the economic horizon length in the EMPC formulation to a sufficiently large value may result a higher economic improvement. However, the increase in economic optimization horizon would increase the resulting NLP problem size. The computational burden could limit the use of the EMPC formulation with larger economic optimization horizons in real-time applications. The ART of the dual-layer methods is at least two orders of magnitude lower than that of the EMPC methods with an appropriate horizon length. The CL-DRTO-MPC economic performance is slightly less than that of the EMPC formulation with the same economic optimization horizon.
In conclusion, the performance comparison on the basis of multiple criteria in this study demonstrates that the economic performance criterion is not necessarily the only important metric, and the operational constraint limitations and the optimization problem solution time could have an important impact on the selection of the most suitable real-time optimization approach. / Thesis / Master of Applied Science (MASc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/23444 |
Date | 30 November 2017 |
Creators | Eskandari, Mahdi |
Contributors | Swartz, Christopher L.E., Chemical Engineering |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0021 seconds