Return to search

Contributions à l'étude de détection des bandes libres dans le contexte de la radio intelligente.

Les systèmes de communications sans fil ne cessent de se multiplier pour devenir incontournables de nos jours. Cette croissance cause une augmentation de la demande des ressources spectrales, qui sont devenues de plus en plus rares. Afin de résoudre ce problème de pénurie de fréquences, Joseph Mitola III, en 2000, a introduit l'idée de l'allocation dynamique du spectre. Il définit ainsi le terme " Cognitive Radio " (Radio Intelligente), qui est largement pressenti pour être le prochain Big Bang dans les futures communications sans fil [1]. Dans le cadre de ce travail on s'intéresse à la problématique du spectrum sensing qui est la détection de présence des Utilisateurs Primaires dans un spectre sous licence, dans le contexte de la radio intelligente. L'objectif de ce travail est de proposer des méthodes de détection efficaces à faible complexité et/ou à faible temps d'observation et ceci en utilisant le minimum d'information a priori sur le signal à détecter. Dans la première partie on traite le problème de détection d'un signal aléatoire dans le bruit. Deux grandes méthodes de détection sont utilisées : la détection d'énergie ou radiomètre et la détection cyclostationnaire. Dans notre contexte, ces méthodes sont plus complémentaires que concurrentes. Nous proposons une architecture hybride de détection des bandes libres, qui combine la simplicité du radiomètre et la robustesse des détecteurs cyclostationnaires. Deux méthodes de détection sont proposées qui se basent sur cette même architecture. Grâce au caractère adaptatif de l'architecture, la détection évolue au cours du temps pour tendre vers la complexité du détecteur d'énergie avec des performances proches du détecteur cyclostationnaire ou du radiomètre selon la méthode utilisée et l'environnement de travail. Dans un second temps on exploite la propriété parcimonieuse de la Fonction d'Autocorrelation Cyclique (FAC) pour proposer un nouvel estimateur aveugle qui se base sur le compressed sensing afin d'estimer le Vecteur d'Autocorrelation Cyclique (VAC), qui est un vecteur particulier de la Fonction d'Autocorrelation Cyclique pour un délai fixe. On montre par simulation que ce nouvel estimateur donne de meilleures performances que celles obtenues avec l'estimateur classique, qui est non aveugle et ceci dans les mêmes conditions et en utilisant le même nombre d'échantillons. On utilise l'estimateur proposé, pour proposer deux détecteurs aveugles utilisant moins d'échantillons que nécessite le détecteur temporel de second ordre de [2] qui se base sur l'estimateur classique de la FAC. Le premier détecteur exploite uniquement la propriété de parcimonie du VAC tandis que le second détecteur exploite en plus de la parcimonie la propriété de symétrie du VAC, lui permettant ainsi d'obtenir de meilleures performances. Ces deux détecteurs outre qu'ils sont aveugles sont plus performants que le détecteur non aveugle de [2] dans le cas d'un faible nombre d'échantillons.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00812666
Date08 February 2013
CreatorsKhalaf, Ziad
PublisherSupélec
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0023 seconds