Return to search

Spectral opportunity analysis of the terrestrial television frequency bands in South Africa / M. Ferreira.

The sharing of the terrestrial TV frequency spectrum with Secondary Users (SUs) is presently the focus point of numerous research efforts worldwide. In many regulatory domains, contiguous blocks of VHF and UHF spectrum are available for exclusive use by the terrestrial TV broadcasting incumbents. However, this notion is currently challenged by the spectrum management paradigm of Dynamic Spectrum Access (DSA), advocating that this spectrum may be shared on a dynamic basis with SUs.
The migration of analogue terrestrial TV to Digital Terrestrial Television (DTT) has also catalysed the notion that the terrestrial TV frequency spectrum will no longer be exclusively used for terrestrial broadcasting. Some administrations have already embraced this technology, reforming spectrum policy to allow unlicensed secondary access to the Spectral Opportunities (SOs) present in the terrestrial TV frequency bands. The Independent Communications Authority of South Africa (ICASA) has expressed early interest in the possibilities of TV white space technology and its possible utility in exploiting the SOs that exist in the terrestrial TV frequency bands.
Core to the issues mentioned above is the quantification of the Spectral Opportunity (SO) available. To this end, the work presented in this thesis gives a quantified estimate of the SO available in South Africa. This work is the first of its kind for the South African environment and uncovers new knowledge regarding SO in South Africa.
SO is analysed and quantified on provincial and national level for three discrete points in time: before the start of dual-illumination, during dual illumination and after analogue switch-off.
A system model that is able to produce the required geo-referenced field strength coverage and SO maps is conceptualised and implemented. A complete standards compliant model is implemented from scratch, verified and validated, with design decisions specific to the South African context. The analysis methodology is developed with rigour. The construction of the TV transmitter database, definition of incumbent protection criteria and development of the required analysis metrics to quantify SO are presented.
SO in the VHF and UHF terrestrial TV frequency bands is quantified by expressing SO in terms of the number of available channels, weighted respectively by land area and population density. The analysis results indicate that significant SO is available for exploitation by TV white space devices in the terrestrial TV spectrum in South Africa.
The effects of radio astronomy advantage areas on the SO available are also investigated. The probability of finding contiguous channels in the Very High Frequency (VHF) and Ultra High Frequency (UHF) bands is also quantified. A comparative study, comparing the SO for South Africa with related work in Europe and the United States of America (USA), is also performed. Finally, maps that visualise the SO available are constructed for the three discrete time periods evaluated. / Thesis (PhD (Computer Engineering))--North-West University, Potchefstroom Campus, 2013

Identiferoai:union.ndltd.org:NWUBOLOKA1/oai:dspace.nwu.ac.za:10394/9656
Date January 2013
CreatorsFerreira, Melvin
PublisherNorth-West University
Source SetsNorth-West University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0112 seconds