Return to search

Dynamics of Cortical Networks Segregated into Layers and Columns

The neocortex covers 90% of the human cerebral cortex [41] and is responsible for higher cognitive function and socio-cognitive skills in all mammals. It is known to be structured in layers and in some species or cortical areas, in columns. A balanced network model was built, which incorporated these structural organizations and in particular, the layers, minicolumns and hypercolumns. The dynamics of eight different network models were studied, based on combinations of structural organizations that they have. The eigenvalue spectra of their matrices was calculated showing that layered networks have eigenvalues outside their bulk distribution in contrast to networks with columns and no layers. It was demonstrated, through simulations, that networks with layers are unstable and have a lower threshold to synchronization, thus, making them more susceptible to switch to synchronous and regular activity regimes [10]. Moreover, introduction of minicolumns to these networks was observed to partially counterbalance synchrony and regularity, in the network and neuron activity, respectively. Layered networks, principally the ones without minicolumns, also have higher degree correlations and a reduced size of potential pre- and post- connections, which induces correlations in the neuronal activity and oscillations.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-176900
Date January 2015
CreatorsKalfas, Ioannis
PublisherKTH, Beräkningsbiologi, CB
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds