abstract: The dynamics of a fluid flow inside 2D square and 3D cubic cavities
under various configurations were simulated and analyzed using a
spectral code I developed.
This code was validated against known studies in the 3D lid-driven
cavity. It was then used to explore the various dynamical behaviors
close to the onset of instability of the steady-state flow, and explain
in the process the mechanism underlying an intermittent bursting
previously observed. A fairly complete bifurcation picture emerged,
using a combination of computational tools such as selective
frequency damping, edge-state tracking and subspace restriction.
The code was then used to investigate the flow in a 2D square cavity
under stable temperature stratification, an idealized version of a lake
with warmer water at the surface compared to the bottom. The governing
equations are the Navier-Stokes equations under the Boussinesq approximation.
Simulations were done over a wide range of parameters of the problem quantifying
the driving velocity at the top (e.g. wind) and the strength of the stratification.
Particular attention was paid to the mechanisms associated with the onset of
instability of the base steady state, and the complex nontrivial dynamics
occurring beyond onset, where the presence of multiple states leads to a
rich spectrum of states, including homoclinic and heteroclinic chaos.
A third configuration investigates the flow dynamics of a fluid in a rapidly
rotating cube subjected to small amplitude modulations. The responses were
quantified by the global helicity and energy measures, and various peak
responses associated to resonances with intrinsic eigenmodes of the cavity
and/or internal retracing beams were clearly identified for the first time.
A novel approach to compute the eigenmodes is also described, making accessible
a whole catalog of these with various properties and dynamics. When the small
amplitude modulation does not align with the rotation axis (precession) we show
that a new set of eigenmodes are primarily excited as the angular velocity
increases, while triadic resonances may occur once the nonlinear regime kicks in. / Dissertation/Thesis / Doctoral Dissertation Mathematics 2019
Identifer | oai:union.ndltd.org:asu.edu/item:53664 |
Date | January 2019 |
Contributors | Wu, Ke (Author), Lopez, Juan (Advisor), Welfert, Bruno (Advisor), Tang, Wenbo (Committee member), Platte, Rodrigo (Committee member), Herrmann, Marcus (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Doctoral Dissertation |
Format | 183 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0017 seconds