We examine a class of planar area preserving mappings and give a geometric condition that guarantees the existence of homoclinic points. To be more precise, let $f,g:R \to R$ be $C^1$ functions with domain all of $R$. Let $F:R^2 \to R^2$ denote a horizontal reflection in the curve $x=-f(y)$, and let $G:R^2 \to R^2$ denote a vertical reflection in the curve $y=g(x)$. We consider maps of the form $T=G \circ F$ and show that a simple geometric condition on the fixed point sets of $F$ and $G$ leads to the existence of a homoclinic point for $T$. / Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2013-09-17 14:22:35.72
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/8288 |
Date | 17 September 2013 |
Creators | Jensen, ERIK |
Contributors | Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.)) |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English, English |
Detected Language | English |
Type | Thesis |
Rights | This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. |
Relation | Canadian theses |
Page generated in 0.0019 seconds