In recent years, technological advances in animal tracking have renewed interests in collective animal behavior, and in particular, locust swarms. These swarms pose a major threat to agriculture in northern Africa, the Middle East, and other regions. In their early life stages, locusts move in hopper bands, which are huge aggregations traveling on the ground. Our main goal is to understand the underlying mechanisms for the emergence and organization of these bands. We construct an agent-based model that tracks individual locusts and a continuum model that tracks the evolution of locust density. Both these models are motivated by experimental observations of individuals’ behavior. The macroscopic emergent behavior of the group is studied through numerical simulation of these models.
Identifer | oai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:hmc_theses-1112 |
Date | 01 January 2017 |
Creators | Zhang, Jialun |
Publisher | Scholarship @ Claremont |
Source Sets | Claremont Colleges |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | HMC Senior Theses |
Rights | © 2017 Jialun Zhang |
Page generated in 0.002 seconds