Return to search

Propagation of Rayleigh waves in thin films

With the advent of thin film technology and more recently its applications in microelectronics and control of surface properties, the interest in mechanical properties of thin films has grown tremendously. Mechanical defects such as creep, fracture and adhesion loss, play a very important role in physical instabilities of thin film materials. An acoustic microscope has been built to study mechanical properties of thin-films. The microscope operates at a nominal frequency of 50 MHz. Rayleigh surface waves velocities on the surface of film-substrate systems were measured from V(z) curves generated by the acoustic microscope. V(z) curves are produced from interference between the Rayleigh surface wave and the specularly reflected waves. Technologically important materials, non-stoichiometric titanium nitride (TiN{dollar}\sb{lcub}\rm x{rcub}{dollar}) films and diamond films, were fabricated by using magnetron plasma deposition and hot filament chemical vapor deposition (HFCVD) on Si (100) and Si (111) substrates. Spectra from XPS (X-ray Photoelectron Spectroscopy) were used to determine the chemical composition of the films and SEM (Scanning Electron Microscope) micrographs were taken to study the morphology of the films. Rayleigh surface wave velocity measurements on TiN{dollar}\sb{lcub}\rm x{rcub}{dollar} films show a sharp increase in velocity at x = 0.7. A comparison with the phase diagram of TiN {dollar}\sb{lcub}\rm x{rcub}{dollar} suggests that the sharp increase in velocity might be due to a crystal structural transition from tetragonal {dollar}\varepsilon{dollar}-Ti{dollar}\sb2{dollar}N to fcc {dollar}\delta{dollar}-TiN.

Identiferoai:union.ndltd.org:wm.edu/oai:scholarworks.wm.edu:etd-3479
Date01 January 1997
CreatorsAnanda, Agus A.
PublisherW&M ScholarWorks
Source SetsWilliam and Mary
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations, Theses, and Masters Projects
Rights© The Author

Page generated in 0.0121 seconds