The mechanisms of thermal transport in defect-free silicon nanostructures are examined using a combination of lattice dynamics (LD) calculations and the Boltzmann transport equation (BTE). To begin, the thermal conductivity reduction in thin films is examined using a hierarchical method that first predicts phonon transport properties using LD calculations, and then solves the phonon BTE using the lattice Boltzmann method. This approach, which considers all of the phonons in the first Brillouin-zone, is used to assess the suitability of common assumptions used to reduce the computational effort. Specifically, we assess the validity of: (i) neglecting the contributions of optical modes, (ii) the isotropic approximation, (iii) assuming an averaged bulk mean-free path (i.e., the Gray approximation), and (iv) using the Matthiessen rule to combine the effect of different scattering mechanisms. Because the frequency-dependent contributions to thermal conductivity change as the film thickness is reduced, assumptions that are valid for bulk are not necessarily valid for thin films.
Using knowledge gained from this study, an analytical model for the length-dependence of thin film thermal conductivity is presented and compared to the predictions of the LD-based calculations. The model contains no fitting parameters and only requires the bulk lattice constant, bulk thermal conductivity, and an acoustic phonon speed as inputs. By including the mode-dependence of the phonon lifetimes resulting from phonon-phonon and phonon-boundary scattering, the model predictions capture the approach to the bulk thermal conductivity better than predictions made using Gray models based on a single lifetime.
Both the model and the LD-based method are used to assess a procedure commonly used to extract bulk thermal conductivities from length-dependent molecular dynamics simulation data. Because the mode-dependence of thermal conductivity is not included in the derivation of this extrapolation procedure, using it can result in significant error.
Finally, phonon transport across a silicon/vacuum-gap/silicon structure is modelled using lattice dynamics and Landauer theory. The phonons transmit thermal energy across the vacuum gap via atomic interactions between the leads. Because the incident phonons do not encounter a classically impenetrable potential barrier, this mechanism is not a tunneling phenomenon. The heat flux due to phonon transport can be 4 orders of magnitude larger than that due to photon transport predicted from near-field radiation theory.
Identifer | oai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/32882 |
Date | 31 August 2012 |
Creators | Sellan, Daniel P. |
Contributors | Amon, Cristina H. |
Source Sets | University of Toronto |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0896 seconds