Image classification using data from neuromorphic vision sensors is a challenging task that affects the use of dynamic vision sensor cameras in real- world environments. One impeding factor is noise in the neuromorphic event stream, which is often generated by the dynamic vision sensors themselves. This means that effective noise filtration is key to successful use of event- based data streams in real-world applications. In this paper we harness two feature representations of neuromorphic vision data in order to apply conventional frame-based image tools on the neuromorphic event stream. We use a standard noise filter to evaluate the effectiveness of noise filtration using a popular dataset converted to neuromorphic vision data. The two feature representations are the best-of-class standard Histograms of Averaged Time Surfaces (HATS) and a simpler grid matrix representation. To evaluate the effectiveness of the noise filter, we compare classification accuracies using various noise filter windows at different noise levels by adding additional artificially generated Gaussian noise to the dataset. Our performance metrics are reported as classification accuracy. Our results show that the classification accuracy using frames generated with HATS is not significantly improved by a noise filter. However, the classification accuracy of the frames generated with the more traditional grid representation is improved. These results can be refined and tuned for other datasets and may eventually contribute to on- the- fly noise reduction in neuromorphic vision sensors. / Händelsekameror är en ny typ av kamera som registrerar små ljusförändringar i kamerans synfält. Sensorn som kameran bygger på är modellerad efter näthinnan som finns i våra ögon. Näthinnan är uppbyggd av tunna lager av celler som omvandlar ljus till nervsignaler. Eftersom synsensorer efterliknar nervsystemet har de getts namnet neuromorfiska synsensorer. För att registrera små ljusförändringar måste dessa sensorer vara väldigt känsliga vilket även genererar ett elektroniskt brus. Detta brus försämrar kvalitén på signalen vilket blir en förhindrande faktor när dessa synsensorer ska användas i praktiken och ställer stora krav på att hitta effektiva metoder för brusredusering. Denna avhandling undersöker två typer av digitala framställningar som omvandlar signalen ifrån händelsekameror till något som efterliknar vanliga bilder som kan användas med traditionella metoder för bildigenkänning. Vi undersöker brusreduseringens inverkan på den övergripande noggrannhet som uppnås av en artificiell intelligens vid bildigenkänning. För att utmana AIn har vi tillfört ytterligare normalfördelat brus i signalen. De digitala framställningar som används är dels histogram av genomsnittliga tidsytor (eng. histograms of averaged time surfaces) och en matrisrepresentation. Vi visar att HATS är robust och klarar av att generera digitala framställningar som tillåter AIn att bibehålla god noggrannhet även vid höga nivåer av brus, vilket medför att brusreduseringens inverkan var försumbar. Matrisrepresentationen gynnas av brusredusering vid högre nivåer av brus.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-302514 |
Date | January 2021 |
Creators | Trogadas, Giorgos, Ekonoja, Larissa |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2021:487 |
Page generated in 0.0027 seconds