Return to search

Telomere maintenance in human cells : implications in cancer and ageing diseases

Telomeres are protective structures at the end of eukaryotic chromosomes essential for indefinite cell proliferation. Their disruption causes activation of DNA repair pathways, growth arrest and/or cell death. In normal cells telomere shortening during cell division has been proposed to act as a tumor suppressor mechanism to block the proliferation of cells at risk of undergoing malignant transformation. Overcoming this proliferative block by activating a mechanism to maintain telomeres is a necessary requirement for unlimited proliferation and tumor progression. Human cells have two mechanisms for telomere maintenance: a more common one based on telomerase and a rarer one based on recombination called ALT. / Here we report the isolation of an immortal human cell line that maintains short telomeres in the absence of biologically active telomerase and key features of active ALT. Our results suggest that the mechanisms of telomere maintenance in human cells may be more diverse than previously thought and have important implications for the development of anti-cancer strategies based on the inhibition of telomere maintenance. / Due to widespread distribution of telomerase in human tumors and its absence in most normal cells, telomerase is the main target of these anti-cancer strategies. However, targeting telomerase per se or in combination with anti-cancer drugs is not sufficient to trigger rapid cell death of tumor cells. On the other hand, disturbances in telomere capping do not require telomere shortening to induce growth arrest and may act more quickly. Our goal was to investigate the feasibility of a new approach based on the combination of telomere destabilization and chemotherapeutic drugs. Our results show that interfering with telomere maintenance enhances the susceptibility of human tumor cells to anti-cancer drugs independently of their telomere lengths and mechanisms to maintain them. / Finally, given the involvement of telomeres in maintaining genomic stability, we investigated the mechanism by which mutations in the telomerase RNA subunit contribute to autosomal dominant dyskeratosis congenita, a premature ageing disease associated with mutations in the telomerase holoenzyme. Our data strongly indicate that the clinical manifestations of this disease may be caused by telomere shortening due to haploinsufficiency of telomerase activity and provide a direct correlation between disturbances in telomere length maintenance and human disease.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.86067
Date January 2005
CreatorsCerone, Maria Antonietta
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Anatomy and Cell Biology.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002326225, proquestno: AAINR21718, Theses scanned by UMI/ProQuest.

Page generated in 0.002 seconds