Return to search

Coding techniques for information-theoretic strong secrecy on wiretap channels

Traditional solutions to information security in communication systems act in the application layer and are oblivious to the effects in the physical layer. Physical-layer security methods, of which information-theoretic security is a special case, try to extract security from the random effects in the physical layer. In information-theoretic security, there are two asymptotic notions of secrecy---weak and strong secrecy

This dissertation investigates the problem of information-theoretic strong secrecy on the binary erasure wiretap channel (BEWC) with a specific focus on designing practical codes. The codes designed in this work are based on analysis and techniques from error-correcting codes. In particular, the dual codes of certain low-density parity-check (LDPC) codes are shown to achieve strong secrecy in a coset coding scheme.

First, we analyze the asymptotic block-error rate of short-cycle-free LDPC codes when they are transmitted over a binary erasure channel (BEC) and decoded using the belief propagation (BP) decoder. Under certain conditions, we show that the asymptotic block-error rate falls according to an inverse square law in block length, which is shown to be a sufficient condition for the dual codes to achieve strong secrecy.

Next, we construct large-girth LDPC codes using algorithms from graph theory and show that the asymptotic bit-error rate of these codes follow a sub-exponential decay as the block length increases, which is a sufficient condition for strong secrecy. The secrecy rates achieved by the duals of large-girth LDPC codes are shown to be an improvement over that of the duals of short-cycle-free LDPC codes.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/42776
Date29 August 2011
CreatorsSubramanian, Arunkumar
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0023 seconds