This study investigated effects of the process parameters on the forging load and metal flow pattern during forging and thread-rolling these two process of LZ91 magnesium alloy small size screw by the finite element analysis. At first, Compression tests were carried out under various forming temperatures to study the flow stress. Then, FEM software DEFORM-2D is adopted to simulate forging and thread-rolling processes of small screw to analyze the formability and parameters. In one of this study, there are two stages in forging process, and found out that up-die velocity, temperatures and friction factors will affect the product quality and appearance; on the other part, it investigated the effect of friction factor and temperature under thread-rolling process, and found out that effective stress, effective strain, metal flow and height of thread will be affected.
In addition, conduct forging and thread-rolling experiments by using universal testing machine with the mold self-designed, and MoS2 of lubricant, and comparing the analytical results to verify the suitability and accuracy of FEM for forging process. Finally, according to the analysis result of this study, engineers can take it as reference.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0829111-033118 |
Date | 29 August 2011 |
Creators | Huang, Kai-neng |
Contributors | Wei-Ching Yeh, Gow-Yi Tzou, Yeong-Maw Hwang, Fuh-Kuo Chen, Woei-Shyan Lee |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0829111-033118 |
Rights | user_define, Copyright information available at source archive |
Page generated in 0.0018 seconds