New phosphonium and ammonium ionic liquids were prepared for use in two green applications. Ionic liquids are generating considerable current interest as media for electrochemical processes such as electrodeposition, which can be used to create thin films of a variety of compounds. For the first time, silicon deposition has been achieved in the phosphonium ionic liquid triethyl(2-methoxyethyl)phosphonium bis(trifluoromethylsulfonyl)amide (P201-TFSI). Subsequently, silicon has been deposited from a wide variety of precursors in order to optimize the thickness and morphology of the deposited films. The silicon films electrodeposited in the phosphonium ionic liquid show marked differences from those deposited in organic solvents, imidizolium and pyrrolidinium based ionic liquids.
Phosphonium and ammonium ionic liquids were also investigated for use in carbon dioxide capture. Task-specific ionic liquids have shown great promise as agents for the physisorption and chemisorption of CO2 from combustion gas streams. Efforts to synthesize new task specific ionic liquids with multiple amine functionalities for CO2 capture are reported. Four different reaction pathways were explored for the synthesis of these materials. While this goal was not achieved in this work, task-specific phosphonium and ammonium ionic liquids offer the promise of opening up new areas in ionic liquid research. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/25832 |
Date | 11 September 2014 |
Creators | Grimes, Scott Alan |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0016 seconds