The goal of this thesis is to design and test techniques for unsupervised adaptation of speech recognizers on some audio data without any textual transcripts. A training set is prepared at first, and a baseline speech recognition system is trained. This sistem is used to transcribe some unseen data. We will experiment with an adaptation data selection process based on some speech transcript quality measurement. The system is re-trained on this new set than, and the accuracy is evaluated. Then we experiment with the amount of adaptation data.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:234944 |
Date | January 2015 |
Creators | Švec, Ján |
Contributors | Karafiát, Martin, Schwarz, Petr |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds