Accompanying materials housed with archival copy. / Measuring greenhouse gas (GHG) emissions directly at the farm scale is most relevant to the agricultural sector and has the potential to eliminate some of the uncertainty arising from scaling up from plot or field studies or down from regional or national levels. The stable nighttime atmosphere acts as a chamber within which sequentially-measured GHG concentration profiles determine the flux of GHGs. With the overall goal of refining the nocturnal boundary layer (NBL) budget method to obtain reliable flux estimates at a scale representative of the typical eastern Canadian farm (approximately 1 km2), fluxes of CO2, N2O, and CH4 were measured at two agricultural farms in Eastern Canada. Field sites in 1998 and 2002 were located on an experimental farm adjacent to a suburb southwest of the city of Ottawa, ON, a relatively flat area with corn, hay, and soy as the dominant crops. The field site in 2003 was located in the rural community of Coteau-du-Lac, QC, about 20 km southwest of the island of Montreal, a fairly flat area bordered by the St. Lawrence River to the south, consisting mainly of corn and hay with a mixture of soy and vegetable crops. A good agreement was obtained between the overall mean NBL budget-measured CO2 flux at both sites, near-in-time windy night eddy covariance data and previously published results. The mean NBL-measured N2O flux from all wind directions and farming management was of the same order of magnitude as, but slightly higher than, previously published baseline N2O emissions from agroecosystems. Methane fluxes results were judged to be invalid as they were extremely sensitive to wind direction change. Spatial sampling of CO 2, N2O, and CH4 around the two sites confirmed that [CH4] distribution was particularly sensitive to the nature of the emission source, field conditions, and wind direction. Optimal NBL conditions for measuring GHG fluxes, present approximately 60% of the time in this study, consisted of a very stable boundary layer in which GHG profiles converged at the top of the layer allowing a quick determination of the NBL flux integration height. For suboptimal NBL conditions consisting of intermittent turbulence where GHG profiles did not converge, a flux integration method was developed which yielded estimates similar to those obtained during optimal conditions. Eighty percent of the GHG flux in optimal NBL conditions corresponded to a footprint-modelled source area of approximately 2 km upwind, slightly beyond the typical length of a farm in Coteau-du-Lac. A large portion (50%) of the flux came from within 1 km upwind of the measurement site, showing the influence of local sources. 'Top-down' NBL-measured flux values were compared with aggregated field, literature and IPCC flux values for four footprint model-defined areas across both sites, with results indicating that in baseline climatic and farm management conditions, with no apparent intermittent NBL phenomena, the aggregated flux was a good approximation of the NBL-measured flux.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.115843 |
Date | January 2009 |
Creators | Wittebol, Laura A., 1973- |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | (Department of Natural Resource Sciences.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 003420846, proquestno: AAINR61806, Theses scanned by UMI/ProQuest. |
Page generated in 0.0012 seconds