Return to search

Investigation of the transient nature of rolling resistance on an operating Heavy Duty Vehicle

An operating vehicle requires energy to oppose the subjected driving resistances. This energy is supplied via the fuel combustion in the engine. Decreasing the opposing driving resistances for an operating vehicle increases its fuel efficiency: an effect which is highly valued in today’s industry, both from an environmental and economical point of view. Therefore a lot of progress has been made during recent years in the area of fuel efficient vehicles, even though some driving resistances still rises perplexity. These resistances are the air drag Fd generated by the viscous air opposing the vehicles propulsion and the rolling resistance Frr generated mainly by the hysteresis caused by the deformation cycle of the viscoelastic pneumatic tires. The energy losses associated with the air drag and rolling resistance account for the majority of the driving resistances facing an operating vehicle, and depends on numerous stochastic and ambient parameters, some of which are highly correlated both within and between the two resistances. To increase the understanding of the driving mechanics behind the energy losses associated with the complexity that is rolling resistance, a set of complete vehicle tests has been carried out. These tests were carried out on the test track Malmby Fairground, using a Scania CV AB developed R440 truck equipped with various sensors connected in one measurement system. Under certain conditions, these parameters can allow for an investigation of the rolling resistance, and a separation of the rolling resistance and air drag via explicit subtraction of the air drag from the measured traction force. This method is possible since the aerodynamic property AHDVCd(β) to some extent can be generated from wind tunnel tests and CFD simulations. Two measurement series that enable the above formulated method of separation were designed and carried out, using two separate measurement methods. One which enables the investigation of the transient nature of rolling resistance as it strives for stationarity, where the vehicle is operated under constant velocities i.e. no acceleration, and one using the well established method of coastdown, where no driving torque is applied. The drive cycles spanned a range of velocities, which allowed for dynamic and stationary analyses of both the tire temperature- and the velocity dependence of rolling resistance. When analysing the results of the transient analysis, a strong dependence upon tire temperature for given constant low velocity i.e. v ≤ 60 kmh−1 was clearly visible. The indicated dependency showed that the rolling resistance decreased as the tire temperature increased over time at a given velocity, and vice versa, towards a stationary temperature and thereby rolling resistance. The tire temperature evolution from one constant velocity to another, took place well within 50 min to a somewhat stationary value. However, even though the tire temperature had reached stationarity, rolling resistance did not; there seemed to be a delay between stationary tire temperature, and rolling resistance. The results did not indicate any clear trends for v ≥ 60 kmh−1, where the results at v = 80 kmh−1 were chaotic. This suggests that some additional forces were uncompensated for, or that the compensation for air drag was somehow wrongly treated at higher velocities. Several factors ruled out any attempts at proposing a new rolling resistance model. These included: the chaotic results for v = 80 kmh−1, the delayed rolling resistance response upon tire temperature stabilization, and the lack of literature support for the observed tendency. The results from the coastdown series on the other hand, showed good agreement with a dynamical model suggested in literature. The stationary temperature behaviour for the considered velocity range at assumed constant condition is also supported in literature. Finally, an investigation of the aerodynamic property AHDVCd inspired by ongoing work in ACEA (European Automobile Manufacturers’ Association), was carried out assuming both zero and non-zero air drag at low velocities. The results indicated surprisingly good agreement with wind tunnel measurements, especially when neglecting air drag at low velocities: as suggested by ACEA. / För att övervinna de motstånd som ett fordon utsätts för under drift krävs energi, vilket levereras genom förbränningen av bränsle. Genom att minska de körmotstånd som ett fordon utsätts för under drift, kan man öka dess energieffektivitet. Denna potential är idag högt värderad i fordonsindustrin, både ur ett miljömässigt och ekonomiskt perspektiv. På senare år har stora framsteg gjorts inom området energieffektiva fordon, men fortfarande råder det förvirring kring de energiförluster som förknippas med luftmotstånd Fd och rullmotstånd Frr, där luftmotståndet skapas av den omkringliggande viskösa luften, medan rullmotståndet genereras av hysteresen som uppstår när fordonets viskoelastiska pneumatiska däck utsätts för deformation. De energiförluster som förknippas med luft- och rullmotstånd motsvarar den största delen av de motstånd som ett fordon påverkas av, och beror på en mängd stokastiska och yttre parametrar, varav vissa är starkt korrelerade både inom och mellan nämnda motstånd. För att förbättra förståelsen kring dessa energiförluster, med fokus på förståelsen av rullmotstånd, har ett antal helfordonstest genomförts. Dessa genomfördes på provbanan Malmby Fairground med en R440 lastbil från Scania CV AB, utrustad med en mängd sensorer sammankopplade i ett mätsystem. Det uppbyggda mätsystemet möjliggjorde samtida mätningar av bl.a. drivande moment, motorvarv, fordonshastighet, däcktemperatur, omkringliggande lufts hastighet och dess riktning. Under specifika förhållanden kunde dessa parametrar möjliggöra analys av rullmotstånd genom en explicit subtraktion av luftmotstånd från den uppmätta drivande kraften. Denna metod är möjlig tack vare en förhållandevis bra modell av ekipagets aerodynamiska egenskap AHDVCd(β), som generats från vindtunneltest och CFD simuleringar. Två körcykler som möjliggjorde ovan formulerade separation designades och genomfördes. Dessa använder två skilda mätmetoder, varav den ena möjliggör analys av rullmotståndets övergående förlopp från dynamiskt till stationärt genom att hålla konstant hastighet. Den andra studerade det dynamiska förloppet genom den väletablerade metoden utrullning, dvs. utan något drivande moment. Dessa körcyklar genomfördes, för ett antal hastigheter, vilket möjliggjorde analys av både hastighets- och däcktemperaturberoendet hos rullmotstånd, under dynamiska såväl som stationära förlopp. Analysen av rullmotståndets dynamik i strävan mot stationära förhållanden visade på ett starkt temperaturberoende vid låga hastigheter dvs. v ≤ 60 kmh−1. Beroendet visade på att rullmotståndet avtog med ökande däcktemperatur och vice versa, tills dess att en någorlunda stationär temperatur för given hastighet uppnåtts. Däcktemperaturen stabiliserades till ett nytt stationärt värde inom 50 min från att hastigheten ändrats. Resultaten tyder dock på att även om stationär däcktemperatur uppnåtts finns det en fördröjning i rullmotståndets tidsspann innan rullmotståndet stabiliserat sig. För högre hastigheter, dvs. v ≥ 60 kmh-1, var dock inga klara trender synliga, varken i hastighet eller temperatur och resultaten vid v = 80 kmh-1 var kaotiska. Detta antyder att man missat att kompensera för någon kraft vid höga hastigheter, alternativt att man på något sätt kompenserar fel för luftmotståndet vid högre hastigheter. Flera faktorer hindrade försök att föreslå någon ny rullmotståndsmodell. Dessa faktorer inkluderar det kaotiska resultatet vid v = 80 kmh-1, tidsfördröjningen mellan stationärt rullmotstånd och däcktemperatur samt att resultatet för antagna stationära värden inte finner stöd i litteraturen. Resultatet från utrullningsprovet överstämmer dock bra med tidigare föreslagen dynamisk modell, samt att resultaten av beteendet hos stationär temperatur för olika hastigheter även de överensstämmer med och finner stöd i litteraturen. Slutligen har en studie kring den aerodynamiska egenskapen AHDVCd, inspirerad av pågående arbete inom ACEA (European Automobile Manufacturers’ Association) utförts både med antagandet av ett noll- skilt och med ett försumbart luftmotstånd vid låga hastigheter. Resultatet visar på en överraskande god överensstämmelse med vindtunnelmätningar, framför allt under antagandet av försumbart luftmotstånd vid låga hastigheter i enlighet med förslagen metod från ACEA.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-93298
Date January 2014
CreatorsLundberg, Petter
PublisherUmeå universitet, Institutionen för fysik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds