Return to search

Matematická analýza regularizovaného modelu viskoelastické nenewtonovské tekutiny / Matematická analýza regularizovaného modelu viskoelastické nenewtonovské tekutiny

In this thesis we provide an existence result for a regularized model of viscoelastic non- newtonian fluid. We consider incompressible fluid with shear rate dependent viscosity and with Cauchy stress tensor capable to describe stress relaxation. An elastic part of the Cauchy stress tensor is governed by Oldroyd-type differential equation. In particular, we are interested in fluids with strong shear thinning effect. We prove that if the viscosity function µ (D) is such that tensor µ (D) D is p-coercive, monotone and has (p − 1)-growth for p > 6 5 and some other additional assumptions are satisfied, then there exists a solution to the system of PDEs describing the flow in a bounded domain. The proof is not simple because the convective term is not integrable with a high power. The problem is solved using Lipschitz truncation method for evolution PDEs. 1

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:305654
Date January 2012
CreatorsŠalom, Pavel
ContributorsPokorný, Milan, Bulíček, Miroslav
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0015 seconds