Disasters are characterized by large numbers of victims and required resources, overwhelming the available resources. Disaster response involves various entities like Incident Commanders, dispatch centers, emergency operations centers, area command and hospitals. An effective emergency response system should facilitate coordination between these various entities. Victim triage, emergency resource allocation and victim dispatch to hospitals form an important part of an emergency response system. In this present research effort, an emergency response system with the aforementioned components is developed.
Triage is the process of prioritizing mass casualty victims based on severity of injuries. The system presented in this thesis is a low-cost victim triage system with RFID tags that aggregate all victim information within a database. It will allow first responders' movements to be tracked using GPS. A web-based real time resource allocation tool that can assist the Incident Commanders in resource allocation and transportation for multiple simultaneous incidents has been developed. This tool ensures that high priority resources at emergency sites are received in least possible time. This web-based tool also computes the patient dispatch schedule from each disaster site to each hospital. Patients are allocated to nearest hospitals with available medical facilities. This tool can also assist resource managers in emergency resource planning by computing the time taken to receive required resources from the nearest depots using Google Maps. These web-based tools complements emergency response systems by providing decision-making capabilities.
Identifer | oai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:theses-1630 |
Date | 01 January 2011 |
Creators | Inampudi, Venkata Srihari |
Publisher | ScholarWorks@UMass Amherst |
Source Sets | University of Massachusetts, Amherst |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses 1911 - February 2014 |
Page generated in 0.0011 seconds