Return to search

Parsimonious Biosonar-Inspired Sensing for Navigation Near Natural Surfaces

Achieving autonomous in complex natural environments has the potential to transform society by bringing the benefits of automation from the confines of the factory floor to the outdoors. There, it could benefit areas such as environmental monitoring and clean-up, precision agriculture, delivery of goods. A fundamental requirement for achieving these goals are sensors that can provide reliable support for navigation, e.g., a drone, in natural environments. In this thesis, sonar-based navigation has been investigated as an approach to parsimonious autonomous sensing for drones. Bats living in dense vegetation have demonstrated that autonomous navigation in a complex, natural environment based on two one-dimensional ultrasonic echo streams is feasible. Here, a biomimetic sonar head has been used to collect echo data from recreations of natural foliage in the lab under controlled conditions. This data was used to address the research question whether the grazing angle at which the sonar is looking at a surface can be estimated from the echoes -- despite the random three-dimensional nature of the scatter from the foliage. To investigate this, the echoes have been subjected to statistical analysis such as spectral coherence and cross-correlation. Most importantly, the foliage data was compared against predictions made by the Endura method (energy, duration, and range method) that has been devices for two-dimension random scatterers. The results of this analysis shows that -- despite their profoundly random nature -- echoes can be used to estimate the sonar grazing angle directly, i.e., without the need to resort to reconstructions of the foliage geometry. This opens the possibility of developing simple devices for navigation control in natural environments that can control the direction of motion at a very little computational cost. / Master of Science / Autonomously flying drones is a potential technology that could bring benefits to the society and improve the quality of life for humans[22]. Therefore, a study of autonomously flying in a natural environment is necessary, and this thesis will focus on drone that could recognize objects with different grazing angle and acoustic signal by collecting data from near foliage surface. For example, when a bush wall is in front of the drone, a on board computer could inform drone whether the drone airline will collide with the bush wall or the bush wall is safely out of drone’s path[5]. If on board computer reads that there will be a collision with bush wall, then drone needs to make decision (change direction or stop immediately) to avoid crush on to bush wall. A sonar based navigation system has been investigated as an approach to achieve autonomous sensing for drones, which is inspired by bats. Bats use their natural sonar system to navigate in cave or forest, hence, it is hardly to see bats slam into any obstacles while flying. Bats navigation behaviours could be reconstructed as a sonar based autonomy. Hence, this thesis is inspired by bats to determine if there is a computational way to illustrate that sonar based sensor could be a solution to achieve reactive autonomy by using different grazing angle of the surface’s acoustic signals.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/88850
Date05 April 2019
CreatorsWang, Haosen
ContributorsMechanical Engineering, Mueller, Rolf, Abaid, Nicole, Leonessa, Alexander
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.002 seconds