Return to search

Evaluation of a high-rise building for passive house classifications in PHPP : Simulation and optimization of energy efficiency measures for residential high-rise buildings in different climates

This thesis is a part of the major EU project EE-Highrise which is a part of the European 7th Framework Research Program (FP7-ENERGY). In order to demonstrate and test new technologies and concepts, a demo building has been constructed in Ljubljana, the capital of Slovenia. The approach during the development of the building has been to consider all its elements with the purpose to increase the energy efficiency and sustainability of the building. Umeå University’s objective is to develop regional specific models of the demo high-rise building. The objective of this thesis is to evaluate whether a simplified model of the high rise building, Eco Silver House, can meet the passive house classifications in four selected cities; Ljubljana, Sibenik, Umeå and Dubai and then to suggest improvements of the models for the different regions. Drawings of the building were provided along with an IFC file for construction of the model in PHPP. The simulation tool used for simulations, PHPP, contained all necessary tools for designing a properly functioning Passive House. By preparing an energy balance, the annual energy demand of the building was calculated based on input related to building characteristics. Results from the simulations have then been compared to the requirements for the German Passive House classification. The performance of the building in Umeå has also be compared to the Swedish passive house standards. Improvements to the climate shell and the ventilation system were after that examined depending on the results. It was shown that it is possible to construct regional specific models that fulfill the passive house requirements in three of four regions. The model achieved passive house standard without any additional energy efficiency measures in Ljubljana and Šibenik while a combination of measures was needed to fulfill all the criteria’s in Umeå. The Swedish requirements used for evaluation of the model in Sweden were easier to fulfill since they have been developed for the cold climate present in Umeå. Since no regional passive house classification was used to evaluate the performance of the model in Dubai the cooling and primary energy demand exceeded the limiting criteria’s. The energy efficiency measure with reduced window area had the greatest impact on heating and cooling demand in all climates. This measure should be included in all future models which also is suggested by parallel studies on similar models of the same building. The only climate where an increased U-value of the external envelope resulted in improved performance of the model was in Šibenik. For all the other climates where a lowered U-value was implemented did the overall performance improve. / EE-Highrise (European 7th Framework Research Program.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-127056
Date January 2016
CreatorsLundberg, Nils
PublisherUmeå universitet, Institutionen för tillämpad fysik och elektronik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0123 seconds