Return to search

Development of Epidermal Growth Factor Receptor (EGFR) Specific Nanoprobes for Surface Enhanced Raman Spectroscopy (SERS)

Novel biocompatible nanoprobes for optical imaging of Epidermal Growth Factor receptor (EGFR) were created. 5 and 18 nm gold nanoparticles (AuNPs) and 5 and 45 nm diameter silver nanoparticles (AgNPs) were conjugated to EGF protein via ?-lipoic acid. AgNPs were not previously attached to EGF. TOF-MS confirms EGF-linker formation. ELISA verifies the linked-EGF activity alone and with EGF-NPs. Core-shell silver-gold nanoparticles (AgAuNPs) gave similar results. TEM staining with uranyl acetate exhibits a bright ring, smaller than EGF, around nanoparticles. Dark field microscopy shows localized, intense cytoplasmic scattering, possibly lipid droplets, in cancer cells incubated with or without nanoprobes. Following injection, mice organs were harvested for EGF-NP immune response determination. Sterilization likely inactivated EGF before ICP-MS. Intense surface enhanced Raman scattering (SERS, 632.8 nm) follows MgSO4 induced EGF-AgNPs aggregation. Pelleted EGF-AgNP tagged cancer cells lack SERS indicative intensity contrast. AgAuNPs could provide increased stability, brighter SERS, and reduced silver biocompatibility concerns.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:NSHD.ca#10222/35454
Date29 July 2013
CreatorsLucas, Leanne Jennifer
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish

Page generated in 0.002 seconds