Return to search

Radio Frequency Exposure From5G Small Cells Utilizing MassiveMIMO

The radio frequency (RF) electromagnetic field (EMF) exposure of a 5G small cell radiobase station (RBS) using massive MIMO antenna is assessed. The compliance distance for auniform antenna excitation is determined for a 4x4- and an 8x8 planar array antenna at fourdifferent carrier frequencies, 10, 15, 28 and 60 GHz. Three different exposure standards areused to find the compliance distance, the ICNIRP-, the FCC- and a draft IEEE standard.Simulations using the method of moments (MoM) was used to analyze the antennas and calculatethe power density. The compliance distance converges to Fries far field formula in thefar field region, where said formula is valid. Each standard use different averaging areas andthe convergence is slower for a larger averaging area. This can be explained by the act ofaveraging working as a low pass filter. A lower frequency also leads to a slower convergence,as the far field is located further away.A statistical model is developed to assess the time-averaged realistic maximum power level,based on a 8x8 planar array antenna using a carrier frequency of 28 GHz. Parameters such asTDD, user position and utilization are considered and the model is valid in both the near fieldand the far field regions. The user positions are determined to obtain a realistic conservativeRF EMF exposure with a confidence level of 95%. The antenna can transmit the signal in adefined set of 47 different beam directions spanning -60 to 60 degrees in azimuth and -15 to15 degrees in elevation. The set of 47 beams are simulated using the method of moments tocalculate the electromagnetic fields in the vicinity of the RBS antenna. For the user distributionsinvestigated and at a distance of 20 cm, the power reduction factor is below 0.22. Asthe distance becomes larger the power reduction factor converges toward around 0.17 usinga weighted user distribution and toward 0.10 using a uniform user distribution. This impliesthat the compliance distance can be reduced significantly compared with the results using thetheoretical maximum power.A four panel model is created with the same input parameters as in the one panel case. Themodel is based on a small cell radio base station product produced by Ericsson. A statisticalmodel is created to assess the RF exposure which are made to converge towards the one panelcase far away from the antenna. The users are distributed uniformly and separately over the4 panels with priority given to the panels with highest exposure. The power reduction factoris one forth of the single panel case close to the antenna and converges toward the single panelresults. In general, a four panel product will also have a significant reduction in compliancedistance compared to the results obtained by using constant maximum power.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-415335
Date January 2018
CreatorsDahlstedt, Mattias
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC E, 1654-7616 ; 20016

Page generated in 0.017 seconds