Electron scattering cross sections have been computed for pyridine and pyrimidine using the static-exchange approximation with model potential to account for dynamic electron correlation. To obtain well-converged orbitals, we have expanded all partial waves to a maximum angular momentum of l = 60 for both targets. We have obtained total cross sections for electron scattering energies to 20 eV. Both targets display similar features, namely a dipole-induced increase in the integrated cross section at scattering energies below 5 eV, and peaks corresponding to resonances in b1, a2, and b1 symmetries. These resonances were investigated through a Siegert eigenstate analysis and Breit-Wigner fit of the SECP eigenphase sums. They were also compared to the virtual orbitals obtained from a minimum basis set Hartree-Fock calculation on both targets.
We consider electron scattering resonances from cis-diamminedichloroplatinum, [Pt(NH3)2Cl2], the ligand molecular species Cl2 (1Sigma+g ), and the isolated transition metal center Pt in a nondegenerate atomic state (1S) at the SECP level of theory. As a rigorous comparison to the single-state, single-configuration SECP level results of these smaller, yet electron dense targets, we have also considered scattering from ground state Cl2 and Pt in the 1S and 3D states in the multichannel configuration-interaction (MCCI) approximation originally developed for photoionization for scattering up to 10 eV.
Photoionization cross sections and angular distributions in the recoil frame (RFPAD) and molecular frame (MFPAD) have been computed for inner-shell C 1s and Cl 2p ionization from the chloroalkanes chloromethane and chloroethane, with ionization leading to a variety of ionic fragment states. We have also computed valence level ionization from the nitro molecule nitromethane CH3NO2 leading to the dissociation of the CN bond. All of these calculations were performed in the frozen-core Hartree-Fock approximation. Even at this level of theory, we obtain computed results that compare well to the photoelectronphotoion coincidence measurements.
The fullerene C20 is the smallest fullerene predicted to exist, with most relevant structural calculations suggesting the reduction of the icosahedral symmetry into one in which the target species possesses at maximum only a dihedral axis. We have computed positron scattering cross sections for the molecule in two low-symmetry structural isomers Ci and C2, within the HF approximation. Density functional expressions were used to incorporate important positron-electron interactions within the calculation. We have found similar cross sections and resonance features for both isomers, including a positron scattering resonance whose density is found within the framework of the fullerene cluster.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2012-05-11227 |
Date | 2012 May 1900 |
Creators | Carey, Ralph |
Contributors | Lucchese, Robert R. |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | thesis, text |
Format | application/pdf |
Page generated in 0.0114 seconds