Durant cette thèse nous avons caractérisé et amélioré une nouvelle source de rayons X avec unplasma ECR (résonance cyclotronique électronique) permettant de générer des électronsénergétiques de 10 à 120 keV, qui vont ensuite produire le rayonnement X par freinage(bremsstrahlung). Les améliorations de l’installation ont permis d’obtenir une source stable, pouvantfonctionner une journée entière de travail (huit heures) sans arrêt. Dans la première partie de l’étudeexpérimentale on a étudié et déterminé les paramètres optimaux de la source : la pression, lapuissance micro-onde et la configuration magnétique sur le rayonnement X du plasma. Nous avonségalement confirmé la localisation des électrons énergétiques sur un anneau due à la configurationmagnétique. L’intensité trop faible et la zone d’émission non ponctuelle du rayonnement plasma, nepermettant pas l’utilisation de la source à plasma, une cible a été insérée sur la trajectoire desélectrons énergétique pour résoudre ces deux problèmes.Le principal avantage de notre source par rapport aux tubes X, est l’absence de haute tension (20 à400 kV). Pour chauffer les électrons, nous utilisons une onde de 2,45 GHz, qui est la fréquenceindustrielle autorisée dans les fours à micro-ondes, délivrée par un magnétron. Les éléments simplesqui composent notre source donne un coût plus faible qu’un système classique de tubes X, dûprincipalement au prix élevé du générateur HT pour les tubes X. De plus, nous n’avons pas besoind’un vide très poussé car, à la différence des tubes X, la source ECRX fonctionne avec une pressionrésiduelle de 0,1mPa. Et enfin notre source est compacte ce qui la rend facilement transportable. Lesapplications de cette source sont nombreuses comme la radiologie, la stérilisation et le contrôle nondestructif industriel. / During this thesis we have characterised and developed a new X-ray source with an ECR plasma(electron cyclotron resonance) generating energetic electrons from 10 to 120 keV, which will emit adeceleration radiation (the Bremsstrahlung). The improvements of the installation permit to obtain astable source, which can work during one day (eight hours) without stop. In first part of theexperimental study we have studied and determined the optimal parameters of the source: pressure,micro-wave power and the magnetic configuration on the X radiation of the plasma. We also confirmedthe localisation of the energetic electron on a ring due to the magnetic configuration. The low intensityand the non punctual emission size of the X radiation, don’t allow the use of the source, so a target isinserted in the trajectory of the energetic electron to solve these two weaknesses.The main advantage of our source compared with X-ray tubes, is the absence of high voltage (20 to400 kV). For heating the electron, we use a 2,45 GHz wave, that is the industrial frequency authorizedfor the micro-wave oven, delivered by the magnetron. The simple elements that compose our sourceare less expensive than the classical X-ray tubes, due to mainly the high cost of the X-ray generator.Moreover, we don’t need a high vacuum, mandatory for the X-ray tubes; an ECRX operates at aresidual pressure of 0,1 mPa. And finally, we have a compact source. Applications will be various frommedical, like radiological, sterilization, to non-destructive industrial control.
Identifer | oai:union.ndltd.org:theses.fr/2009ORLE2077 |
Date | 22 October 2009 |
Creators | Majeri, Nassim |
Contributors | Orléans, Pouvesle, Jean-Michel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0016 seconds