Return to search

Signal delay estimates for design of multichip assemblies

Signal delay estimates for high-speed interconnection nets are formulated using analytical methods. The equations are suitable for estimating delay in interconnects of printed wiring boards and multi-chip modules where the resistance of wires is small. Effects of drivers, receivers, chip interfaces and wires on delay are considered by using simple models. The wires are treated as lossless transmission lines with capacitive discontinuities modeling receiver chip interfaces. Drivers are voltage sources with series resistance. Signal delay consists of line propagation delay and delay due to the change in rise time and reflections at the discontinuities. Various commonly used net topologies are identified and wiring rules and delay predictors provided for each of them. It is shown that interconnect delay can be formulated as a non-linear function of the product of the line characteristic impedance and load capacitance. SPICE simulations are sued to validate analytical derivations.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/278171
Date January 1992
CreatorsMenezes, Karol Fidelis, 1966-
ContributorsPalusinski, O. A.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Thesis-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0016 seconds