Return to search

Desenvolvimento de um micro-transdutor acústico capacitivo. / Development of an acoustic capacitive microtransducer.

Neste trabalho é proposto um dispositivo MEMS do tipo micro-transdutor acústico capacitivo, CMUT (sigla em inglês - Capacitive Micromachined Ultrasonic Transducer). Em vez de usar piezoeletricidade, o CMUT tem um array de capacitores, onde cada capacitor possui um eletrodo inferior fixo, uma cavidade e o eletrodo superior composto de uma placa flexível. Quando submetida a uma tensão CC adequada, a placa se deflete se aproximando do eletrodo inferior devido à força eletrostática. Assim a placa fica tensionada podendo vibrar quando excitada por uma tensão CA. Neste caso o CMUT opera como emissor de ondas acústicas. A placa também pode ser excitada por uma onda acústica agindo em sua superfície. Neste caso o dispositivo opera como sensor. Uma das contribuições desse trabalho é o processo de fabricação simplificado com o uso do fotorresiste SU-8 como parte da estrutura do dispositivo. Sua facilidade de processamento e suas propriedades físicas lhe conferem estabilidade e rigidez adequadas para tal fim. Foram realizadas modelagens e simulações analíticas e computacionais do comportamento da placa. Os resultados auxiliaram no melhor entendimento do comportamento do dispositivo sob tensão mecânica devido a uma carga ou uma tensão de polarização. Esses resultados também auxiliaram na definição de parâmetros iniciais do processo de fabricação. Durante o processo de fabricação, foram realizados diversos testes a fim de se encontrar o processo mais adequado à infraestrutura disponível. No processo escolhido, a base do dispositivo é fabricada num substrato de vidro com eletrodos inferiores de alumínio depositados por evaporação. Os pilares são fabricados em SU-8, depositado por spin coatting. A placa é colada posteriormente utilizando-se fotorresiste AZ. O AZ é depositado sobre um pedaço de folha de cobre ou alumínio. As duas partes são colocadas em contato e para promover a colagem é aplicada pressão durante a cura. As amostras foram caracterizadas eletricamente utilizando-se um medidor de impedância RCL. Foram levantadas curvas de impedância, capacitância e ângulo de fase em função da frequência (1 kHz a 1 MHz). Além do sinal CA utilizado pelo instrumento durante a medição foi aplicado um nível CC que variou conforme as dimensões dos protótipos. Também foram levantadas curvas de impedância, capacitância e angulo de fase em função de uma carga mecânica aplicada. Para valores de polarização mais elevados, foram montados circuitos específicos. Estes circuitos são capazes de polarizar o CMUT, aplicar um sinal CA para medição e proteger demais componentes e instrumentos dos aparatos de medição. O dispositivo respondeu bem a aplicação de carga mecânica, excitação por sinal CA e excitação com onda mecânica. Os resultados mostraram que o dispositivo apresenta bom potencial para ser aplicado na análise de fluidos. / This work presents a new process to fabricate an acoustic micro transducer to be used as a microsensor or a microactuator. The acoustic transducers are based on the electrostatic effect and consist on arrays of microfabricated capacitors. Such devices are commonly referred as CMUT, Capacitive Micromachined Ultrasonic Transducer. The bottom electrode (evaporated aluminum) of each capacitor is fixed on the surface of glass substrate, while the top electrode is a thin plate structure of copper or aluminum suspended on a cavity surrounded by posts. Since the top electrode is flexible, it bends toward the bottom electrode when a DC bias is applied. In this way, the top electrode can be forced to vibrate using an AC signal to be used as an acoustic wave emitter. Conversely, an ultrasound receiver is achieved as the measured capacitance changes when the DC biased top electrode moves following an external acoustic wave pressure. An innovation of this work is the use of the photoresist SU-8 to fabricate the post structures surrounding the cavities of the capacitive micro transducers. Its relatively simple processing steps and adequate mechanical properties make the SU-8 a convenient choice as an inexpensive structural material. The bottom part of the device is prepared on a glass substrate using an aluminum layer evaporated and etched to form the bottom electrodes. Then, SU-8 is spin coated, baked and etched adequately to form the posts surrounding the cavities. The top part is prepared by simply spinning an AZ-type photoresist on aluminum or copper plate. Finally, both halves are bonded under pressure on a hot plate. Several modeling and simulation analyses were performed in order to estimate the working performance of the micro transducers. The results of simulations helped to define the initial parameters and materials for the fabrication process. Samples submitted to a DC bias were initially characterized using an RCL meter in order to infer impedance, capacitance and phase angle behavior as a function of frequency (from 1 kHz to 1 MHz). Protection circuits were used in order to test CMUTs with high DC bias. These circuits allow to apply high DC bias, and an AC signal while other measuring equipments are protected. The device responded to application of mechanical loading, excitation by an AC signal and excitation by mechanical wave as well. The results showed that the device has good potential to be applied to the analysis of fluids.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-17102014-113303
Date09 December 2013
CreatorsLucas Gonçalves Dias Mendonça
ContributorsRicardo Cury Ibrahim, Victor Sonnenberg, Delson Torikai, Vicente Afonso Ventrella, Cecília Amélia de Carvalho Zavaglia
PublisherUniversidade de São Paulo, Engenharia Mecânica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds