The Plasmodium falciparum parasite, carried by Anopheles mosquitoes, is currently a global problem due to the rising incidence of resistance of the parasite to available antimalaria drugs. Resistance and difficult treatment groups, including pregnant woman and young children, are pressing for the development of new, safe and effective prophylactic and treatment antimalarials. Because of the extensive process of developing new drugs, researchers and health care professionals have turned to combination therapy where a fast acting antimalarial is combined with slower acting drugs, such as antibiotics.
The macrolide antibiotics, erytbromycin and azithromycin, have been studied to a limited extent for their potential antimalarial effect. Certain advantages, such as their safety profile (especially that of azithromycin) in pregnancy and administration to young children, motivates continual research into the advancement of the effect these drugs exude on malaria. Drug delivery systems contribute to the efficacy of medicines, conquering several difficulties of treatment with oral medication. Pheroidâ„¢ technology is a patented drug delivery system, mainly consisting of plant and essential fatty acids, and has been demonstrated to entrap, carry and deliver pharmacologically active compounds and other useful molecules.
This study compared the in vitro effects of the macrolide antibiotics on the growth of a chloroquine-resistant strain (RSA 11) of Plasmodium falciparum to the effects of the macrolides entrapped in Pheroidâ„¢ vesicles on the same strain over and extended observation period of 144 hours. ELISA assays were conducted by analysing the HRP II (histidine-rich protein) levels on a pre-coated microtitre plate. The effects of the type of formulation, concentration and time were compared.
The in vitro difference between erythromycin alone and entrapped in Pheroidâ„¢ vesicles were found to be statistically significant (p = 0.000000) while the effects of both formulations did not seem to be concentration dependant (p = 0.628424). Prolonged exposure was also statistically meaningful (p = 0.008268), though it seems that exposure need not exceed 96 hours. The type of formulation, in the case of azithromycin (azithromycin alone vs. azitbromycin entrapped in Pheroidâ„¢ vesicles), proved statistically significant (P = 0.002572), while neither formulation seemed concentration dependant (P = 0.427731). Prolonged exposure was found to be statistically insignificant for azithromycin (P = 0.221941). / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2010.
Identifer | oai:union.ndltd.org:NWUBOLOKA1/oai:dspace.nwu.ac.za:10394/4999 |
Date | January 2010 |
Creators | Van Niekerk, Elizabeth Catharina |
Publisher | North-West University |
Source Sets | North-West University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0031 seconds