This thesis studies properties of hydrogel, which arises on the basis of electrostatic and hydrophobic interactions between hyaluronan chain and micelles of cationic surfactant. A native sodium hyaluronan at molecular weight 750–1 000 kDa and a cationic surfactant CTAB (cetyltrimethylammonium bromide) were used. This hydrogel was assessed as a material for drug delivery systems. The hydrogels were made by mixing 200mM CTAB with 0.5% hyaluronan, both dissolved in 0.15M aqueous solution of NaCl simulating physiological solution. Methods used in this study were steady-state and time-resolved fluorescence spectroscopy, more accurately time-resolved emission spectra (TRES) and deconvolution of steady-state emission spectra of a whole sample by means of parameters gained from fluorescence intensity decays at a set of wavelenghts. Selected systems were investigated by three fluorescent probes, prodan, laurdan and rhodamine 6G. The first two mentioned probes were in hydrogel localized only within micelles in three different microenvironments. Rhodamine 6G pointed out that in hydrogel the aqueous environment is significantly restricted in comparison to purely micellar solution. In addition, rhodamine informed about less available micelle surfaces, caused by hyaluronan chains occupation. There were no interactions between the probes and hyaluronan chains. Freshly made hydrogels showed almost the same results as after a week of maturation under its supernatant.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:217033 |
Date | January 2014 |
Creators | Černá, Ladislava |
Contributors | Žitňan, Michal, Mravec, Filip |
Publisher | Vysoké učení technické v Brně. Fakulta chemická |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0027 seconds