Return to search

Abl Family Kinases Regulate Endothelial Function

<p>The vasculature has a crucial function in normal physiology, enabling the transport of oxygen and nutrients to cells throughout the body. In turn, endothelial cells, which form the inner-most lining of blood vessels, are key regulators of vascular function. In addition to forming a barrier which separates the circulation from underlying tissues, endothelial cells respond to diverse extracellular cues and produce a variety of biologically-active mediators in order to maintain vascular homeostasis. Disruption of normal vascular function is a prominent feature of a variety of pathological conditions. Thus, elucidating the signaling pathways regulating endothelial function is critical for understanding the role of endothelial cells in both normal physiology and pathology, as well as for potential development of therapeutic interventions.</p><p>In this dissertation, we use a combination of pharmacological inhibition and knockdown studies, along with generation of endothelial conditional knockout mice, to demonstrate an important role of the Abelson (Abl) family of non-receptor tyrosine kinases (Abl and Arg) in vascular function. Specifically, loss of endothelial expression of the Abl kinases leads to late-stage embryonic and perinatal lethality in conditional knockout mice, indicating a crucial requirement for Abl/Arg kinases in normal vascular development and function. Endothelial <italic>Abl</italic>/<italic>Arg</italic>-null embryos display focal regions of vascular loss and tissue damage, as well as increased endothelial cell apoptosis. An important pro-survival function for the Abl kinases is further supported by our finding that either microRNA-mediated <italic>Abl</italic>/<italic>Arg</italic> depletion or pharmacological inhibition of the Abl kinases increases endothelial cell susceptibility to stress-induced apoptosis <italic>in vitro</italic>. The Abl kinases are activated in response to treatment with the pro-angiogenic growth factors vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). We show that both VEGF- and bFGF-mediated endothelial cell survival is impaired following Abl kinase inhibition.</p><p>These studies have uncovered a previously unappreciated role for the Abl kinases in the regulation of the angiopoietin/Tie2 signaling pathway, which functions to support endothelial cell survival and vascular stability. Loss of Abl/Arg expression leads to reduced mRNA and protein levels of the Tie2 receptor, resulting in impaired activation of intracellular signaling pathways by the Tie2 ligand angiopoietin-1 (Angpt1), as well as decreased Angpt1-mediated endothelial cell survival following serum-deprivation stress. Notably, we found that the Abl kinases are activated following Angpt1 stimulation, suggesting a unique dual role for Abl and Arg in Angpt/Tie2 signaling, potentially modulating Tie2 downstream signaling responses, as well as regulating Tie2 receptor expression.</p><p>Further, we show an important contribution of the Abl family kinases to the regulation of endothelial permeability responses both <italic>in vitro</italic> and <italic>in vivo</italic>. The Abl kinases are activated in response to a diverse group of permeability-inducing factors, including VEGF and the inflammatory mediators thrombin and histamine. We show that inhibition of Abl kinase activity, using either the ATP-competitive inhibitor imatinib or the allosteric inhibitor GNF-2, protects against disruption of endothelial barrier function by the permeability-inducing factors <italic>in vitro</italic>. VEGF-induced vascular permeability similarly is decreased in conditional knockout mice lacking endothelial Abl expression, as well as following treatment with Abl kinase inhibitors <italic>in vivo</italic>. Mechanistically, we show that loss of Abl kinase activity is accompanied by activation of the barrier-stabilizing GTPases (guanosine triphosphatases) Rac1 and Rap1, as well as inhibition of agonist-induced Ca<super>2+</super> mobilization and generation of acto-myosin contractility.</p><p>Taken together, these results demonstrate involvement of the Abl family kinases in the regulation of endothelial cell responses to a broad range of pro-angiogenic and permeability-inducing factors, as well as a critical requirement for the endothelial Abl kinases in normal vascular development and function <italic>in vivo</italic>. These findings have implications for the clinical use of Abl kinase inhibitors.</p> / Dissertation

Identiferoai:union.ndltd.org:DUKE/oai:dukespace.lib.duke.edu:10161/8251
Date January 2013
CreatorsChislock, Elizabeth Marie
ContributorsPendergast, Ann Marie
Source SetsDuke University
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0021 seconds