Leung, Pan Cheung Catherine. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 105-120). / Abstracts in English and Chinese. / DECLARATION --- p.II / ACKNOWLEDGEMENTS --- p.III / ENGLISH ABSTRACT --- p.IV / CHINESE ABSTRACT --- p.VII / Chapter MODULE 1. --- INTRODUCTION --- p.1 / Chapter 1.1. --- Vascular Endothelium --- p.1 / Chapter 1.1.1. --- Vascular Endothelial Functions --- p.1 / Chapter 1.1.2. --- Calcium Signaling in Vascular Endothelial Cells --- p.2 / Chapter 1.2. --- The Founding Member of TRP Family: Drosophila TRP --- p.3 / Chapter 1.2.1. --- Discovery of Drosophila TRP and TRP-related Proteins --- p.3 / Chapter 1.2.2. --- Drosophila TRPs: Ca2+-permeable Channels? --- p.3 / Chapter 1.3. --- Mammalian TRP Superfamily --- p.5 / Chapter 1.3.1. --- The TRP Subfamily: TRPV --- p.9 / Chapter 1.3.2. --- The TRP Subfamily: TRPM --- p.9 / Chapter 1.3.3. --- The TRP Subfamily: TRPC --- p.11 / Chapter 1.4. --- Functional and Physiological Roles of Mammalian TRPCs --- p.12 / Chapter 1.4.1. --- TRPC1 --- p.15 / Chapter 1.4.2. --- TRPC2 --- p.16 / Chapter 1.4.3. --- "TRPC3, TRPC6 and TRPC7" --- p.17 / Chapter 1.4.4. --- TRPC4 and TRPC5 --- p.19 / Chapter 1.4.5. --- Over-expression of TRPCs: Physiologically Relevant Channels? --- p.20 / Chapter 1.4.6. --- Alternatives to Heterologous Expression Study --- p.21 / Chapter 1.5. --- Aims of the Study --- p.23 / Chapter MODULE 2. --- MATERIALS AND METHODS --- p.24 / Chapter 2.1. --- Functional Characterization of TRPCs by Antisense Technique --- p.24 / Chapter 2.1.1. --- Restriction Enzyme Digestion --- p.26 / Chapter 2.1.2. --- Purification of Released Inserts and Cut pcDNA3 Vectors --- p.27 / Chapter 2.1.3. --- "Ligation of TRPC Genes into Mammalian Vector, pcDNA3" --- p.27 / Chapter 2.1.4. --- Transformation for the Desired Clones --- p.28 / Chapter 2.1.5. --- Plasmid DNA Preparation for Transfection --- p.28 / Chapter 2.1.6. --- Confirmation of the Clones] --- p.29 / Chapter 2.1.6.1. --- Restriction Enzymes Strategy --- p.29 / Chapter 2.1.6.2. --- Polymerase Chain Reaction (PRC) Check --- p.30 / Chapter 2.1.6.3. --- Automated Sequencing --- p.31 / Chapter 2.2. --- Establishing Stable Cell Lines --- p.33 / Chapter 2.2.1. --- Cell Culture --- p.33 / Chapter 2.2.2. --- Transfection Conditions Optimization --- p.33 / Chapter 2.2.3. --- Geneticin Selection --- p.35 / Chapter 2.3. --- Expression Pattern Studies of TRPC Genes in Vascular Tissues --- p.38 / Chapter 2.3.1. --- Immunofluorescence Staining in Cultured CPAE Cells --- p.38 / Chapter 2.3.2. --- Immunolocalization in Human Cerebral and Coronary Arteries --- p.40 / Chapter 2.3.2.1. --- Paraffin Section Preparation --- p.40 / Chapter 2.3.2.2. --- "Immunohistochemistry for TRPC1, 3, 4 and 6 Channels" --- p.40 / Chapter 2.3.2.3. --- Subcellular Localization of hTRPC1 and hTRPC3 Channels in Endothelial Cells --- p.42 / Chapter 2.4. --- Study of Bradykinin-induced Ca2+ Entry by Calcium Imaging --- p.47 / Chapter 2.4.1. --- Primary Aortic Endothelial Cell Culture --- p.47 / Chapter 2.4.2. --- Fura-2 Measurement of [Ca2+]]] --- p.47 / Chapter 2.5. --- Study of Functional Role of TRPC6 in Stably Transfected H5V Cells … --- p.49 / Chapter 2.5.1. --- Protein Sample Preparation --- p.49 / Chapter 2.5.2. --- Western Blot Analysis --- p.50 / Chapter 2.5.3. --- Confocal Microscopy for Bradykinin-induced Calcium Entry --- p.51 / Chapter 2.6. --- Data Analysis --- p.52 / Chapter MODULE 3. --- RESULTS --- p.53 / Chapter 3.1. --- Bradykinin-induced Calcium Entry in Vascular Endothelial Cells --- p.53 / Chapter 3.1.1. --- Bradykinin-induced Calcium Entry --- p.53 / Chapter 3.1.2. --- Effects of cGMP and PKG on Bradykinin-induced Ca2+ Entry --- p.54 / Chapter 3.1.3. --- Effects of HOEUO on Bradykinin-induced Store-independent Ca2+ Entry --- p.55 / Chapter 3.1.4. --- Involvement of Phospholipase C Pathway in Bradykinin-induced Store-independent Ca2+ Entry --- p.55 / Chapter 3.2. --- Expression Pattern of TRPC Channels in Vascular Systems --- p.63 / Chapter 3.2.1. --- Immunolocalization of TRPC Homologues in CPAE Cells --- p.63 / Chapter 3.2.2. --- Immunolocalization of TRPC Homologues in Human Cerebral and Coronary Arteries --- p.66 / Chapter 3.2.3. --- Subcellular Localization of TRPC1 and TRPC3 Fused to Enhanced Green Fluorescence Protein (EGFP) --- p.77 / Chapter 3.3. --- Functional Role of TRPC6 Channels in Bradykinin-induced Calcium Entry --- p.81 / Chapter 3.3.1. --- Effect of Antisense TRPC6 Construct on Protein Expression --- p.81 / Chapter 3.3.2. --- Effect of Antisense TRPC6 on Bradykinin-induced Ca2+ Entry --- p.81 / Chapter 3.3.3. --- Effect of Antisense TRPC6 on Thapsigargin-depleted Ca2+ Stores --- p.82 / Chapter MODULE 4. --- DISCUSSION --- p.89 / Chapter 4.1. --- Characterization of Bradykinin-induced Ca2+ Entry in Endothelial Cells --- p.89 / Chapter 4.2. --- The Expression Pattern of TRPC Isoforms in Vascular Tissues --- p.93 / Chapter 4.3. --- Functional Characterization of TRPC6 Homologues in Bradykinin-induced Ca2+ Entry --- p.98 / Chapter 4.4. --- Perspectives --- p.103 / Chapter 4.5. --- Conclusion --- p.104 / Chapter MODULE 5. --- REFERENCES --- p.105
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_324507 |
Date | January 2003 |
Contributors | Leung, Pan Cheung Catherine., Chinese University of Hong Kong Graduate School. Division of Physiology. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, vii, 120 leaves : ill. (some col., some mounted) ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0019 seconds