Return to search

Localização e extração automática de textos em imagens complexas

Dissertação [mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2010 / Made available in DSpace on 2012-10-25T11:33:35Z (GMT). No. of bitstreams: 1
276692.pdf: 8089696 bytes, checksum: e95d42ab85d9ccef004d65d6361fff12 (MD5) / Existe uma busca crescente por técnicas de extração de informação textual (TIE) em imagens devido ao grande número de aplicações que elas possibilitam. Dentre as aplicações mais relevantes estão os sistemas de busca por imagens na Web, reconhecimento de placas veiculares e gerenciamento de base de dados de imagens. Entretanto, a maioria dos sistemas TIE é dedicada a aplicações em que se conhece o plano de fundo e/ou fontes, dimensões e orientação dos caracteres. Esta dissertação considera a localização e a extração de texto em imagens coloridas sem restrições. Em tal situação, desconhece-se o plano de fundo e o tipo de caractere presente na imagem (i.e., imagens complexas). A técnica de identificação textual proposta neste trabalho utiliza, seqüencialmente, as abordagens baseadas em região e textura. A primeira visa localizar as regiões da imagem candidatas a texto por meio da seleção de contornos de maior magnitude do gradiente de intensidade. A última verifica, dentre as regiões candidatas, aquelas que possuem texto embutido. Tal verificação é realizada por meio de 16 atributos (11 estruturais e 5 texturais) extraídos das regiões localizadas. Esses atributos alimentam um classificador support vector machine (SVM) que rotula as regiões localizadas como texto ou não-texto. As regiões classificadas como textuais são então submetidas à técnica proposta de extração de texto, a qual evita segmentações incorretas nas bordas dos caracteres devido aos artefatos incluídos durante o processo de compressão da imagem. A abordagem proposta é robusta na detecção de textos oriundos de imagens complexas com vistas a diferentes orientações, dimensões e cores do texto, além de prover uma confiável binarização das regiões localizadas. O sistema TIE proposto apresenta resultados competitivos, tanto em precisão quanto em taxa de reconhecimento, quando comparados com outros sistemas da literatura técnica corrente. / There is an increasing search for techniques of text information extraction (TIE) from images due to the large number of applications that they make possible. Among the most relevant applications, search machine systems for Web images can be highlighted, as well as license plate recognition and management of image database. However, the majority of TIE systems are proposed for applications in which the background and/or font, dimension and orientation of characters are known. This dissertation is focused on text location and extraction from general purpose color images. In this situation, there is no information about the background and text present in the images (i.e. complex images). The proposed identification technique sequentially uses an approach based on region and texture. The former aims to locate the text candidate regions by selecting the image contours of higher gradient magnitude. The latter verifies, among the text candidate regions, those that have embedded text. Such verification is performed by using 16 attributes (11 structural and 5 textural) extracted from the text candidate regions. These attributes feed a support vector machine (SVM) classifier that labels the text candidate regions as text or non-text. The regions classified as text are then submitted to the text extraction algorithm, which prevents incorrect segmentations in the character boundaries caused by artifacts included during the image compression process. The proposed approach is robust in text detection from complex images with respect to different size, orientation and text color; moreover, it provides a reliable text binarization. The proposed TIE system exhibits competitive results for both precision and recall rate, as compared with other approaches from the current technical literature.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufsc.br:123456789/94532
Date25 October 2012
CreatorsTahim, André Pires Nóbrega
ContributorsUniversidade Federal de Santa Catarina, Seara, Rui
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatxviii, 179 p.| il., grafs., tabs.
Sourcereponame:Repositório Institucional da UFSC, instname:Universidade Federal de Santa Catarina, instacron:UFSC
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds