From the bacterium Streptomyces sp. SCC-2136 (ATCC 55186), two angucycline natural products are produced, designated Sch 47554 and Sch 47555. These compounds are produced through a type II polyketide biosynthetic pathway. The early biosynthetic steps to these molecules were confirmed. These include the minimal polyketide synthase (PKS), the C-9 ketoreductase, the first-ring aromatase, the subsequent ring cyclase, and two oxy-genases. Also confirmed were the biosynthetic genes responsible for production of the first amicetose moiety, as well as the glycosyltransferase that creates a C-glycosidic bond between the angucyclic scaffold and the amicetose moiety. In confirming these pathways, two new natural products were produced: GG31, an amitosylated rabelomycin, and GG53, rabelomycin hydroxylated at C-12b. Future work will be to understand the late biosynthetic steps and generate new angucyclines through combinatorial biosynthesis.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-5998 |
Date | 01 January 2016 |
Creators | Gladstone, S. Gabrielle |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu). |
Page generated in 0.0021 seconds