Return to search

Synthesis and application of hydroxyapatite and fluoroapatite to scorodite encapsulation

Recent research has investigated the precipitation of crystalline scorodite (FeAsO4·2H2O) as a method to stabilise arsenic for disposal due to its good stability performance according to EPA's TCLP test. It has been determined, however, that scorodite releases arsenic in significant concentrations under alkaline pH or under anoxic conditions. With the objective of enhancing the stability of scorodite, its encapsulation with minerals inert to pH and redox potential variations is considered in this work. Such encapsulation materials are hydroxyapatite (HAP-Ca5(PO4)3OH) and fluoroapatite (FAP-Ca5(PO4)3F), the two most stable of the calcium phosphates. The work described in this thesis includes: 1) the preparation of hydroxyapatite and fluoroapatite powders and their characterisation, 2) the synthesis of crystalline scorodite under atmospheric conditions and its characterisation, 3) the encapsulation of scorodite with hydroxyapatite and fluoroapatite, and 4) the long term stability testing of the encapsulated solids. Hydroxyapatite and fluoroapatite were prepared first by homogeneous precipitation from a metastable solution, to which "Ca" and "PO4" source reagents of different concentrations were added at variable rates. The crystallinity of the produced materials was found to increase with temperature. Crystalline scorodite was produced by seeded crystallisation in ambient pressure. For the encapsulation of the scorodite particles various methods of direct precipitation by controlled supersaturation were attempted, by adjusting the pH and adding/mixing feed solutions of individual calcium and phosphate source reagents. Heterogeneous deposition of HAP on scorodite proved rather difficult. Optimum results were obtained via prior conditioning of the scorodite substrate in a calcium solution and employment of low agitation regime and high (37 ºC rather than 22 ºC) temperature. The stability tests were done in oxic and anoxic environments and their results demonstrated that the encapsulated solids had enhanced stability, since the release of arsenic was lower than it was for naked scorodite. The presence of gypsum was found to help reduce the release of arsenic further as well as phosphorus under oxic, but not anoxic conditions due to possible interaction with the sulphite ions used as reducing agent. / Des recherches récentes ont caractérisé la précipitation de la scorodite (FeAsO4·2H2O) comme méthode de stabilisation de l'arsenic à cause de la bonne stabilité de ce composé lorsque mesuré par le test TCLP de l'EPA. Par contre, ces travaux ont montré que la scorodite relâche plus d'arsenic dans des solutions basiques ou dans des conditions anoxiques. Ce projet se concentre donc sur la stabilisation de la scorodite par son encapsulation par des minéraux inertes aux variations de pH et d'ORP. Les deux matériaux considérés pour l'encapsulation sont hydroxyapatite (HAP-Ca5(PO4)3OH) et fluorapatite (FAP-Ca5(PO4)3F), les deux phosphates de calcium les plus stables. Les résultats décrits dans cette thèse incluent : 1) la préparation de poudre d' hydroxyapatite, de fluorapatite et leurs caractérisations; 2) la synthèse de scorodite cristalline sous air et sa caractérisation; 3) l'encapsulation de scorodite avec l'hydroxyapatite et la fluorapatite; 4) l'évaluation de la stabilité à long terme des solides encapsulés. L'hydroxyapatite et la fluorapatite ont été préparées à partir d'une solution métastable dans laquelle des réactifs contenant du calcium et des phosphates ont été ajoutés à différents rythmes. Les résultats ont montrés que la cristallinité des composés produits augmente avec la température. La scorodite cristalline fut produite par cristallisation amorcée à pression ambiante. L'encapsulation par différentes techniques de précipitation directes fut investiguée en variant le pH et le taux d'addition des réactifs. La déposition hétérogène d'hydroxyapatite sur la scorodite fut difficile à réaliser. Les meilleurs résultats furent obtenus par l'addition de scorodite dans une solution de calcium, une faible agitation et une haute température (37 ºC au lieu de 22 ºC). Les tests de stabilité effectués en présence et en absence d'oxygène ont montré que les solides encapsulés avaient une plus grande stabilité (moins de rejet d'arsenic que ceux non encapsulés). La présence de gypse avait aussi comme effet de diminuer le rejet d'arsenic et de phosphore en présence d'oxygène seulement, probablement à cause d'une interaction avec les sulfites utilisés comme agents réducteurs.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.106510
Date January 2012
CreatorsKatsarou, Lydia
ContributorsGeorge Demopoulos (Internal/Supervisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Engineering (Department of Mining and Materials)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically-submitted theses.

Page generated in 0.0021 seconds